On construit une fonction C1,1 polyconvexe W tel qu'il existe une matrice 2×2 Y satisfaisant la propriété suivante : tous les representants convexes de W ont au moins deux sousgradients distincts (et ne sont donc pas differentiable) au point (Y,detY). Ceci montre, en particulier, qu'une fonction polyconvexe peut être plus differentiable que tous ses representants convex.
We construct a C1,1 polyconvex function W such that there exists a fixed 2×2 matrix Y with the property that all convex representatives of W have at least two distinct subgradients (and are hence not differentiable) at the point (Y,detY), showing in particular that a polyconvex function can be smoother than any of its convex representatives.
Accepté le :
Publié le :
@article{CRMATH_2003__336_1_11_0, author = {Bevan, Jonathan}, title = {An example of a {\protect\emph{C}\protect\textsuperscript{1,1}} polyconvex function with no differentiable convex representative}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--14}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00015-8}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00015-8/} }
TY - JOUR AU - Bevan, Jonathan TI - An example of a C1,1 polyconvex function with no differentiable convex representative JO - Comptes Rendus. Mathématique PY - 2003 SP - 11 EP - 14 VL - 336 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00015-8/ DO - 10.1016/S1631-073X(02)00015-8 LA - en ID - CRMATH_2003__336_1_11_0 ER -
%0 Journal Article %A Bevan, Jonathan %T An example of a C1,1 polyconvex function with no differentiable convex representative %J Comptes Rendus. Mathématique %D 2003 %P 11-14 %V 336 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00015-8/ %R 10.1016/S1631-073X(02)00015-8 %G en %F CRMATH_2003__336_1_11_0
Bevan, Jonathan. An example of a C1,1 polyconvex function with no differentiable convex representative. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 11-14. doi : 10.1016/S1631-073X(02)00015-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)00015-8/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 337-403
[2] Differentiability properties of symmetric and isotropic functions, Duke Math. J., Volume 51 (1984), pp. 699-728
[3] Regularity of quasiconvex envelopes, Calc. Var., Volume 11 (2000), pp. 333-359
[4] J.J. Bevan, On singular minimizers of strictly polyconvex integral functionals, to appear.
[5] Convex bodies and convexity on Grassman cones, Math. Ann., Volume 151 (1963), pp. 1-41
[6] Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal., Volume 95 (1986), pp. 227-268
[7] Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, Theory of Nonlinear Operators, Akademie-Verlag, Berlin, 1977, pp. 197-206
[8] S. Müller, Variational models for microstructure and phase transitions, Lecture Notes, C.I.M.E. summer school, Cetraro, 1996
[9] Convex Analysis, Princeton University Press, Princeton, NJ, 1970
[10] A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations, Volume 10 (2000), pp. 213-221
Cité par Sources :