Nous étudions les grandes déviations logarithmiques pour les normes anisotropes des champs gaussiens aléatoires de deux variables. Le problème est résolu en calculant des normes anisotropes pour les opérateurs intégraux engendrés par les covariances. Nous trouvons des valeurs exactes de telles normes pour quelques classes importantes de champs gaussiens.
We investigate the logarithmic large deviation asymptotics for anisotropic norms of Gaussian random functions of two variables. The problem is solved by the evaluation of the anisotropic norms of corresponding integral covariance operators. We find the exact values of such norms for some important classes of Gaussian fields.
Accepté le :
Publié le :
@article{CRMATH_2003__336_1_85_0, author = {Lifshits, Mikhail and Nazarov, Alexander and Nikitin, Yakov}, title = {Tail behavior of anisotropic norms for {Gaussian} random fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {85--88}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00013-4}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00013-4/} }
TY - JOUR AU - Lifshits, Mikhail AU - Nazarov, Alexander AU - Nikitin, Yakov TI - Tail behavior of anisotropic norms for Gaussian random fields JO - Comptes Rendus. Mathématique PY - 2003 SP - 85 EP - 88 VL - 336 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00013-4/ DO - 10.1016/S1631-073X(02)00013-4 LA - en ID - CRMATH_2003__336_1_85_0 ER -
%0 Journal Article %A Lifshits, Mikhail %A Nazarov, Alexander %A Nikitin, Yakov %T Tail behavior of anisotropic norms for Gaussian random fields %J Comptes Rendus. Mathématique %D 2003 %P 85-88 %V 336 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00013-4/ %R 10.1016/S1631-073X(02)00013-4 %G en %F CRMATH_2003__336_1_85_0
Lifshits, Mikhail; Nazarov, Alexander; Nikitin, Yakov. Tail behavior of anisotropic norms for Gaussian random fields. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 85-88. doi : 10.1016/S1631-073X(02)00013-4. http://www.numdam.org/articles/10.1016/S1631-073X(02)00013-4/
[1] Schur multipliers, Duke Math. J., Volume 44 (1977), pp. 603-639
[2] On a family of extremum problems and the properties of an integral, Math. Notes, Volume 64 (1998), pp. 719-725
[3] A new approach to goodness-of-fit testing based on the integrated empirical process, J. Nonparametr. Statist., Volume 12 (2000), pp. 391-416
[4] Functional Analysis, Pergamon Press, 1982
[5] Comparison results for the lower tail of Gaussian seminorms, J. Theoret. Probab., Volume 5 (1992), pp. 1-31
[6] Gaussian Random Functions, Kluwer Academic Publishers, 1995
[7] On exact constant in the generalized Poincaré inequality, Probl. Math. Anal., Volume 24 (2002), pp. 155-180 (in Russian) J. Math. Sci., 112, 2002, pp. 4029-4047
[8] Some extremal problems for Gaussian and empirical random fields, Proc. St. Petersburg Math. Soc., Volume 8 (2000), pp. 214-230 (in Russian) Amer. Math. Soc. Trans. Ser. 2, 205, 2002, pp. 189-202
[9] Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, 1995
[10] On tensor products of operators from Lp to Lq, Lecture Notes in Math., 1470, Springer, 1991, pp. 108-132
[11] Tests of coordinate independence for a bivariate sample on a torus, Ann. Math. Statist., Volume 42 (1971), pp. 1962-1969
Cité par Sources :