Nous développons une forme normale pour exprimer asymptotiquement une conjugaison entre un germe de champ de vecteur résonant et sa partie linéaire. Nous montrons qu'une telle conjugaison peut s'ecrire sous en terme de fonctions de fonctions dites LMT.
We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type.
Accepté le :
Publié le :
@article{CRMATH_2003__336_1_19_0, author = {Bonckaert, Patrick and Naudot, Vincent and Yang, Jiazhong}, title = {Linearization of germs of hyperbolic vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {19--22}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00007-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00007-9/} }
TY - JOUR AU - Bonckaert, Patrick AU - Naudot, Vincent AU - Yang, Jiazhong TI - Linearization of germs of hyperbolic vector fields JO - Comptes Rendus. Mathématique PY - 2003 SP - 19 EP - 22 VL - 336 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00007-9/ DO - 10.1016/S1631-073X(02)00007-9 LA - en ID - CRMATH_2003__336_1_19_0 ER -
%0 Journal Article %A Bonckaert, Patrick %A Naudot, Vincent %A Yang, Jiazhong %T Linearization of germs of hyperbolic vector fields %J Comptes Rendus. Mathématique %D 2003 %P 19-22 %V 336 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00007-9/ %R 10.1016/S1631-073X(02)00007-9 %G en %F CRMATH_2003__336_1_19_0
Bonckaert, Patrick; Naudot, Vincent; Yang, Jiazhong. Linearization of germs of hyperbolic vector fields. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 19-22. doi : 10.1016/S1631-073X(02)00007-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)00007-9/
[1] Equivalence and normal forms of germs of smooth mappings, Russian Math. Surveys, Volume 33 (1978) no. 1, pp. 107-177
[2] On the continuous dependence of the smooth change of coordinates in parametrized normal forms, J. Differential Equations, Volume 106 (1993), pp. 107-120
[3] Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension 3, Ann. Fac. Sci. Toulouse Math. (6), Volume 10 (2001) no. 4, pp. 595-617
[4] Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994
[5] Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Volume 85 (1963), pp. 693-722
[6] Compensation of small denominators and ramified linearisation of local objects. Complex analytic methods in dynamical systems, Asterisque, Volume 222 (1994) no. 4, pp. 135-199
[7] On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana, Volume 5 (1960), pp. 220-241
[8] Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, 1977
[9] Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude, Ann. Inst. Fourier (Grenoble), Volume 41 (1991), pp. 719-853
[10] Smoothness properties for bifurcation diagrams, Publ. Mat., Volume 41 (1997), pp. 243-268
[11] Linearization of systems of ordinary differential equations in a neighbourhood of invariant toroidal manifolds, Proc. Moscow Math. Soc., Volume 38 (1979), pp. 187-219
[12] On the structure of local homomorphisms of euclidean n-space, I, Amer. J. Math., Volume 80 (1958), pp. 623-631
[13] On the structure of local homomorphisms of euclidean n-space, II, Amer. J. Math., Volume 81 (1959), pp. 578-605
Cité par Sources :