Nous construisons des exemples de surfaces dans l'espace hyperbolique qui ne satisfont pas l'inégalité de Chern–Lashof (qui est vérifiée pour les surfaces immergées dans l'espace euclidien).
We construct examples of surfaces in hyperbolic space which do not satisfy the Chern–Lashof inequality (which holds for immersed surfaces in Euclidean space).
Accepté le :
Publié le :
@article{CRMATH_2003__336_1_47_0, author = {Langevin, R\'emi and Solanes, Gil}, title = {On bounds for total absolute curvature of surfaces in hyperbolic 3-space}, journal = {Comptes Rendus. Math\'ematique}, pages = {47--50}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00003-1}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00003-1/} }
TY - JOUR AU - Langevin, Rémi AU - Solanes, Gil TI - On bounds for total absolute curvature of surfaces in hyperbolic 3-space JO - Comptes Rendus. Mathématique PY - 2003 SP - 47 EP - 50 VL - 336 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00003-1/ DO - 10.1016/S1631-073X(02)00003-1 LA - en ID - CRMATH_2003__336_1_47_0 ER -
%0 Journal Article %A Langevin, Rémi %A Solanes, Gil %T On bounds for total absolute curvature of surfaces in hyperbolic 3-space %J Comptes Rendus. Mathématique %D 2003 %P 47-50 %V 336 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00003-1/ %R 10.1016/S1631-073X(02)00003-1 %G en %F CRMATH_2003__336_1_47_0
Langevin, Rémi; Solanes, Gil. On bounds for total absolute curvature of surfaces in hyperbolic 3-space. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 47-50. doi : 10.1016/S1631-073X(02)00003-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)00003-1/
[1] On the total absolute curvature of immersed manifolds I, Amer. J. Math., Volume 79 (1957), pp. 306-318
[2] Fenchel type theorems for submanifolds of , Comment. Math. Helv., Volume 71 (1996), pp. 594-616
[3] On the total absolute curvature of immersions into hyperbolic spaces, Topics in Differential Geometry, Vols. I, II, Colloq. Math. Soc. Janos Bolyai, 46, 1988, pp. 1201-1209
[4] Total absolute curvature of immersed manifolds, J. London Math. Soc., Volume 41 (1966), pp. 153-160
[5] The total absolute curvature of closed curves in Riemannian manifolds, J. Differential Geom., Volume 9 (1974), pp. 177-193
[6] A comprehensive introduction to differential geometry, Publish or Perish, Wilmington, 1979
[7] Differential topology and the computation of total absolute curvature, Math. Ann., Volume 258 (1982), pp. 471-480
[8] Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, 1994
[9] Convex Analysis, Princeton University Press, Princeton, NJ, 1970
Cité par Sources :