@article{AIHPC_2003__20_5_759_0, author = {Cerami, Giovanna and Molle, Riccardo}, title = {Multiple positive solutions for singularly perturbed elliptic problems in exterior domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {759--777}, publisher = {Elsevier}, volume = {20}, number = {5}, year = {2003}, doi = {10.1016/S0294-1449(02)00030-6}, mrnumber = {1995501}, zbl = {01975933}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/} }
TY - JOUR AU - Cerami, Giovanna AU - Molle, Riccardo TI - Multiple positive solutions for singularly perturbed elliptic problems in exterior domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 759 EP - 777 VL - 20 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/ DO - 10.1016/S0294-1449(02)00030-6 LA - en ID - AIHPC_2003__20_5_759_0 ER -
%0 Journal Article %A Cerami, Giovanna %A Molle, Riccardo %T Multiple positive solutions for singularly perturbed elliptic problems in exterior domains %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 759-777 %V 20 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/ %R 10.1016/S0294-1449(02)00030-6 %G en %F AIHPC_2003__20_5_759_0
Cerami, Giovanna; Molle, Riccardo. Multiple positive solutions for singularly perturbed elliptic problems in exterior domains. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 5, pp. 759-777. doi : 10.1016/S0294-1449(02)00030-6. http://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/
[1] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (3) (1997) 365-413. | Numdam | MR | Zbl
, ,[2] On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Rev. Mat. Iberoamericana 6 (1-2) (1990) 1-15. | MR | Zbl
, ,[3] Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987) 283-300. | MR | Zbl
, ,[4] Existence of positive solutions of the equation −Δu+a(x)u=u(N+2)/(N−2) in RN, J. Funct. Anal. 88 (1) (1990) 90-117. | Zbl
, ,[5] Nonlinear scalar fields equations - I. Existence of a ground-state, Arch. Rational Mech. Anal. 82 (1983) 313-346. | MR | Zbl
, ,[6] Multiple positive solutions for a singularly perturbed Dirichlet problem in “geometrically trivial” domains, Topol. Methods Nonlin. Anal. 19 (1) (2002) 63-76. | Zbl
, ,[7] Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with “rich” topology, Nonlinear Analysis TMA 18 (2) (1992) 109-119. | Zbl
, ,[8] Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis TMA 24 (11) (1995) 1533-1547. | MR | Zbl
, ,[9] G. Cerami, D. Passaseo, Effect of concentrating potentials in some singularly perturbed problems, Calculus of Variations and PDE, to appear. | MR | Zbl
[10] Symmetry of positive solutions of nonlinear elliptic equations in RN, in: Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, 7-A, Academic Press, 1981, pp. 369-402. | MR | Zbl
, , ,[11] Nonlinear elliptic Dirichlet problems in exterior domains: the role of geometry and topology of the domain, Comm. Appl. Nonlinear Anal. 2 (2) (1995) 1-31. | MR | Zbl
, ,[12] Uniqueness of positive solutions of Δu−u+up=0, Arch. Rational Mech. Anal. 105 (1989) 243-266. | Zbl
,[13] Positive solutions for a class of nonlinear elliptic problems in RN, Proc. Roy. Soc. Edinburgh Sect. A 130 (1) (2000) 141-166. | MR | Zbl
, , ,[14] On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains, Discrete Contin. Dynam. Systems 4 (3) (1998) 445-454. | MR | Zbl
, ,[15] Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal. Ser. A: Theory Methods 39 (4) (2000) 447-462. | MR | Zbl
, ,[16] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | MR | Zbl
,[17] Variational Methods - Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. | MR | Zbl
,Cité par Sources :