@article{AIHPC_2003__20_2_293_0, author = {Arisawa, Mariko}, title = {Long time averaged reflection force and homogenization of oscillating {Neumann} boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {293--332}, publisher = {Elsevier}, volume = {20}, number = {2}, year = {2003}, doi = {10.1016/S0294-1449(02)00025-2}, mrnumber = {1961518}, zbl = {01912452}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00025-2/} }
TY - JOUR AU - Arisawa, Mariko TI - Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 293 EP - 332 VL - 20 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00025-2/ DO - 10.1016/S0294-1449(02)00025-2 LA - en ID - AIHPC_2003__20_2_293_0 ER -
%0 Journal Article %A Arisawa, Mariko %T Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 293-332 %V 20 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00025-2/ %R 10.1016/S0294-1449(02)00025-2 %G en %F AIHPC_2003__20_2_293_0
Arisawa, Mariko. Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 2, pp. 293-332. doi : 10.1016/S0294-1449(02)00025-2. http://www.numdam.org/articles/10.1016/S0294-1449(02)00025-2/
[1] Ergodic problem for the Hamilton-Jacobi-Bellman equations I, Existence of the ergodic attractor, Ann. IHP Anal. Non Lineaire 14 (1997) 415-438. | Numdam | MR | Zbl
,[2] Ergodic problem for the Hamilton-Jacobi equations II, Ann. IHP Anal. Non Linearire 15 (1998) 1-24. | Numdam | MR | Zbl
,[3] M. Arisawa, Multiscale homogenizations for first order Hamilton-Jacobi-Bellman equations, Differential and Integral Equations, to appear. | MR
[4] M. Arisawa, Quasi-periodic homogenizations for second order Hamilton-Jacobi-Bellman equations, J. Math. Sci. Appl., to appear. | MR | Zbl
[5] M. Arisawa, Y. Giga, Anisotropic curvature flows in a very thin domain, Hokkaido University Preprint Series in Mathematics 495 (2000), to appear in Indiana U. Math. J. | MR | Zbl
[6] On ergodic stochastic control, Comm. Partial Differential Equations 23 (11-12) (1998) 2187-2217. | MR | Zbl
, ,[7] On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. 73 (4) (1999) 276-285. | MR | Zbl
, ,[8] Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations 154 (1999) 191-224. | MR | Zbl
,[9] Exit time problems in optimal control and the vanishing viscosity method, SIAM J. Control Optim. 26 (1988) 1133-1148. | MR | Zbl
, ,[10] Perturbation Methods in Optimal Control, Series in Modern Applied Mathematics, Wiley, Gauthier-Villars, 1988. | MR | Zbl
,[11] Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. | MR | Zbl
, , ,[12] Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, 43, 1995. | MR | Zbl
, ,[13] The boundary value problems in domains with very rapidly oscillating boundary, J. Math. Anal. Appl. 231 (1) (1999) 213-234. | MR | Zbl
, , ,[14] Remarks on nonlinear uniformly parabolic equations, Indiana Univ. Math. J. 47 (4) (1998) 1293-1326. | MR | Zbl
, , , ,[15] User's guide to viscosity solutions of second order partial differential equations, Bull. AMS 27 (1) (1992). | MR | Zbl
, , ,[16] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983) 1-42. | MR | Zbl
, ,[17] Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. XXXV (1982) 333-363. | MR | Zbl
,[18] The perturbed test function method for viscosity solutions of nonlinear P.D. E's, Proc. Roy. Soc. Edinburgh 111A (1989) 359-375. | MR | Zbl
,[19] Periodic homogeneization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh 120A (1992) 245-265. | MR | Zbl
,[20] Controlled Markov Processes and Viscosity Solution, Springer, New York, 1993. | MR | Zbl
, ,[21] Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. | MR | Zbl
, ,[22] A boundary value problem for the Poisson equation with multi-scale oscillating boundary, J. Differential Equations 137 (1997) 54-93. | MR | Zbl
, , ,[23] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. | MR | Zbl
, ,[24] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990) 26-78. | MR | Zbl
, ,[25] Boundary nonhomogeneous elliptic and parabolic equations, Math. USSR Izv. 20 (1983) 459-492. | Zbl
,[26] Boundary nonhomogeneous elliptic and parabolic equations in a domain, Math. USSR Izv. 22 (1984) 67-97. | Zbl
,[27] Neumann type boundary conditions for Hamilton-Jacobi equations, Duke J. Math. 52 (1985) 793-820. | MR | Zbl
,[28] Construction de processus de diffusion reflechis par penalisation du domaine, Comptes Rendus Paris 292 (1981) 559-562. | MR | Zbl
, , ,[29] P.-L. Lions, G. Papanicolau, S.R.S. Varadhan, Homogeneizations of Hamilton-Jacobi equations, Preprint.
[30] Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1) (1984) 511-537. | MR | Zbl
, ,[31] Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation, Math. Z. 191 (1986) 1-15. | MR | Zbl
, ,Cité par Sources :