@article{AIHPC_2003__20_2_271_0, author = {Cingolani, Silvia and Vannella, Giuseppina}, title = {Critical groups computations on a class of {Sobolev} {Banach} spaces via {Morse} index}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {271--292}, publisher = {Elsevier}, volume = {20}, number = {2}, year = {2003}, doi = {10.1016/S0294-1449(02)00011-2}, mrnumber = {1961517}, zbl = {1023.58004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/} }
TY - JOUR AU - Cingolani, Silvia AU - Vannella, Giuseppina TI - Critical groups computations on a class of Sobolev Banach spaces via Morse index JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 271 EP - 292 VL - 20 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/ DO - 10.1016/S0294-1449(02)00011-2 LA - en ID - AIHPC_2003__20_2_271_0 ER -
%0 Journal Article %A Cingolani, Silvia %A Vannella, Giuseppina %T Critical groups computations on a class of Sobolev Banach spaces via Morse index %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 271-292 %V 20 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/ %R 10.1016/S0294-1449(02)00011-2 %G en %F AIHPC_2003__20_2_271_0
Cingolani, Silvia; Vannella, Giuseppina. Critical groups computations on a class of Sobolev Banach spaces via Morse index. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 2, pp. 271-292. doi : 10.1016/S0294-1449(02)00011-2. http://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/
[1] Critical points for multiple integrands of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996) 249-274. | MR | Zbl
, ,[2] Solitons in several space dimensions: a Derrick's problem and infinitely many solutions, Arch. Rat. Mech. Anal. 154 (2000) 297-324. | MR | Zbl
, , , ,[3] Soliton-like solutions of a Lorentz invariant equation in dimension 3, Math. Phys. 3 (1998) 315-344. | MR | Zbl
, , ,[4] Morse theory on Banach space and its applications to partial differential equations, Chin. Ann. of Math. 4B (1983) 381-399. | MR | Zbl
,[5] Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. | MR | Zbl
,[6] Morse theory in nonlinear analysis, in: , , (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, Word Scientific, Singapore, 1998. | MR | Zbl
,[7] Some results on critical groups for a class of functionals defined on Sobolev Banach spaces, Rend. Acc. Naz. Lincei 12 (2001) 1-5. | EuDML | MR | Zbl
, ,[8] Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Differential Equations 136 (1997) 268-293. | MR | Zbl
, ,[9] C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA 7 (1983) 827-850. | Zbl
,[10] Existence an nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104 (1988) 57-77. | MR | Zbl
,[11] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998. | Zbl
, ,[12] On lower semicontinuity of integral functionals I and II, SIAM J. Control Optim. 15 (1977) 521-538, and 991-1000. | MR | Zbl
,[13] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR | Zbl
, ,[14] Morse index estimates for continuous functionals associated with quasilinear elliptic equations, Adv. Differential Equations 7 (2002) 99-128. | MR | Zbl
,[15] Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. | MR | Zbl
, ,[16] Problems in extending Morse theory to Banach spaces, Boll. UMI 12 (1975) 397-401. | MR | Zbl
, ,[17] Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340. | MR | Zbl
,[18] Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math. 80 (1964) 382-396. | MR | Zbl
,[19] Algebraic Topology, McGraw-Hill, New York, 1966. | MR | Zbl
,[20] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. | MR | Zbl
,[21] On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Part. Differential Equations 8 (1983) 773-817. | MR | Zbl
,[22] A general approach to Morse theory, J. Differential Geom. 12 (1977) 47-85. | MR | Zbl
,[23] Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972) 430-445. | MR | Zbl
,Cité par Sources :