@article{AIHPB_2003__39_5_793_0, author = {Beffara, Vincent}, title = {On conformally invariant subsets of the planar brownian curve}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {793--821}, publisher = {Elsevier}, volume = {39}, number = {5}, year = {2003}, doi = {10.1016/S0246-0203(03)00030-X}, mrnumber = {1997213}, zbl = {1021.60064}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0246-0203(03)00030-X/} }
TY - JOUR AU - Beffara, Vincent TI - On conformally invariant subsets of the planar brownian curve JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 793 EP - 821 VL - 39 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0246-0203(03)00030-X/ DO - 10.1016/S0246-0203(03)00030-X LA - en ID - AIHPB_2003__39_5_793_0 ER -
%0 Journal Article %A Beffara, Vincent %T On conformally invariant subsets of the planar brownian curve %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 793-821 %V 39 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0246-0203(03)00030-X/ %R 10.1016/S0246-0203(03)00030-X %G en %F AIHPB_2003__39_5_793_0
Beffara, Vincent. On conformally invariant subsets of the planar brownian curve. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 5, pp. 793-821. doi : 10.1016/S0246-0203(03)00030-X. http://www.numdam.org/articles/10.1016/S0246-0203(03)00030-X/
[1] Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973. | MR | Zbl
,[2] Cutting Brownian Paths, Mem. Amer. Math. Soc., 657, American Mathematical Society, 1999. | MR | Zbl
, ,[3] An extension of a result of Burdzy and Lawler, Probab. Theory Related Fields 89 (1991) 487-502. | MR | Zbl
, ,[4] Large Deviations Techniques and Applications, Springer, 1998. | MR | Zbl
, ,[5] On the Hausdorff dimension of Brownian cone points, Math. Proc. Cambridge Philos. Soc. 98 (1985) 343-353. | MR | Zbl
,[6] Some Random Series of Functions, Cambridge Stud. Adv. Math., 5, Cambridge University Press, 1993. | MR | Zbl
,[7] Une propriété métrique du mouvement brownien, C. R. Acad. Sci., Sér. A 268 (1969) 727-728. | MR | Zbl
,[8] The dimension of the frontier of planar Brownian motion, Electron Comm. Probab. 1 (1996) 29-47. | MR | Zbl
,[9] Hausdorff dimension of cut points for Brownian motion, Electron. J. Probab. 1 (1996) 1-20. | MR | Zbl
,[10] Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Math. Phys. Electron. J. 4 (1998). | MR | Zbl
,[11] Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, in: Random Walks (Budapest 1998), Bolyai Soc. Math. Stud., 9, 1999, pp. 219-258. | MR | Zbl
,[12] The intersection exponent for simple random walks, Comb. Prob. Comp. 9 (2000) 441-464. | MR | Zbl
, ,[13] The dimension of the Brownian frontier is 4/3, Math. Rev. Lett. 8 (2001) 13-24. | Zbl
, , ,[14] Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187 (2001) 237-273. | MR | Zbl
, , ,[15] Values of Brownian intersection exponents II: Plane exponents, Acta Math. 187 (2001) 275-308. | MR | Zbl
, , ,[16] G.F. Lawler, O. Schramm, W. Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 188 (2002), to appear. | MR | Zbl
[17] Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 109-123. | Numdam | MR | Zbl
, , ,[18] Intersection exponents for planar Brownian motion, Ann. Probab. (1999) 1601-1642. | MR | Zbl
, ,[19] Some properties of planar Brownian motion, in: École d'été de Probabilités de Saint-Flour XX-1990, Lecture Notes in Math., 1527, Springer, 1992. | Zbl
,[20] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000) 221-288. | MR | Zbl
,[21] Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 239-244. | MR | Zbl
,[22] On Brownian disconnection exponents, Bernoulli 1 (1995) 371-380. | MR | Zbl
,[23] Bounds for disconnection exponents, Electron. Comm. Probab. 1 (1996) 19-28. | MR | Zbl
,[24] Critical exponents, conformal invariance and planar Brownian motion, in: Proceedings of the 3rd European Mathematical Congress, Birkhäuser, 2000. | MR | Zbl
,Cité par Sources :