Integral p-adic Hodge theory
Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 219-397.

We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of 𝐂 p . It takes values in a mixed-characteristic analogue of Dieudonné modules, which was previously defined by Fargues as a version of Breuil–Kisin modules. Notably, this cohomology theory specializes to all other known p-adic cohomology theories, such as crystalline, de Rham and étale cohomology, which allows us to prove strong integral comparison theorems.

The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor Lη on the derived category, defined previously by Berthelot–Ogus. On affine pieces, our cohomology theory admits a relation to the theory of de Rham–Witt complexes of Langer–Zink, and can be computed as a q-deformation of de Rham cohomology.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-019-00102-z
@article{PMIHES_2018__128__219_0,
     author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter},
     title = {Integral $p$-adic {Hodge} theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {219--397},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {128},
     year = {2018},
     doi = {10.1007/s10240-019-00102-z},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-019-00102-z/}
}
TY  - JOUR
AU  - Bhatt, Bhargav
AU  - Morrow, Matthew
AU  - Scholze, Peter
TI  - Integral $p$-adic Hodge theory
JO  - Publications Mathématiques de l'IHÉS
PY  - 2018
SP  - 219
EP  - 397
VL  - 128
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-019-00102-z/
DO  - 10.1007/s10240-019-00102-z
LA  - en
ID  - PMIHES_2018__128__219_0
ER  - 
%0 Journal Article
%A Bhatt, Bhargav
%A Morrow, Matthew
%A Scholze, Peter
%T Integral $p$-adic Hodge theory
%J Publications Mathématiques de l'IHÉS
%D 2018
%P 219-397
%V 128
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-019-00102-z/
%R 10.1007/s10240-019-00102-z
%G en
%F PMIHES_2018__128__219_0
Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Integral $p$-adic Hodge theory. Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 219-397. doi : 10.1007/s10240-019-00102-z. http://www.numdam.org/articles/10.1007/s10240-019-00102-z/

[1.] The Stacks Project, available at http://stacks.math.columbia.edu.

[2.] Abbes, A.; Gros, M. Topos co-évanescents et généralisations, 2015

[3.] Andreatta, F.; Iovita, A. Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu, Volume 12 (2013), pp. 77-151 | DOI | MR | Zbl

[4.] Beauville, A.; Laszlo, Y. Un lemme de descente, C. R. Acad. Sci., Sér. 1 Math., Volume 320 (1995), pp. 335-340 | MR | Zbl

[5.] Berthelot, P. Sur le “théorème de Lefschetz faible” en cohomologie cristalline, C. R. Acad. Sci. Paris, Sér. A-B, Volume 277 (1973), p. A955-A958 | Zbl

[6.] Berthelot, P.; Ogus, A. Notes on Crystalline Cohomology, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1978 | Zbl

[7.] Berthelot, P.; Ogus, A. F-isocrystals and de Rham cohomology. I, Invent. Math., Volume 72 (1983), pp. 159-199 | DOI | MR | Zbl

[8.] B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral p-adic Hodge theory, available at | arXiv

[9.] Bhatt, B.; Morrow, M.; Scholze, P. Integral p-adic Hodge theory—announcement, Math. Res. Lett., Volume 22 (2015), pp. 1601-1612 | DOI | MR | Zbl

[10.] B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation.

[11.] Bhatt, B.; Scholze, P. The pro-étale topology for schemes, Astérisque, Volume 369 (2015), pp. 99-201 | Zbl

[12.] Bloch, S.; Kato, K. p-adic étale cohomology, Publ. Math. IHÉS, Volume 63 (1986), pp. 107-152 | DOI | Zbl

[13.] Bombieri, E.; Mumford, D. Enriques’ classification of surfaces in char. p. III, Invent. Math., Volume 35 (1976), pp. 197-232 | DOI | MR | Zbl

[14.] Borger, J. The basic geometry of Witt vectors, I: The affine case, Algebra Number Theory, Volume 5 (2011), pp. 231-285 | DOI | MR | Zbl

[15.] Bosch, S.; Güntzer, U.; Remmert, R. Non-Archimedean Analysis, Springer, Berlin, 1984 (A systematic approach to rigid analytic geometry) | Zbl

[16.] Bosch, S.; Lütkebohmert, W. Formal and rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993), pp. 291-317 | DOI | MR | Zbl

[17.] Breuil, C. Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math., Volume 152 (2000), pp. 489-549 | DOI | MR | Zbl

[18.] Brinon, O. Représentations p-adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. (N. S.), 2008 (vi+159 pp.)

[19.] Caruso, X. Conjecture de l’inertie modérée de Serre, Invent. Math., Volume 171 (2008), pp. 629-699 | DOI | MR | Zbl

[20.] Colmez, P.; Nizioł, W. Syntomic complexes and p-adic nearby cycles, Invent. Math., Volume 208 (2017), pp. 1-108 | DOI | MR | Zbl

[21.] B. Conrad and O. Gabber, Spreading out of rigid-analytic varieties, in preparation.

[22.] Davis, C.; Kedlaya, K. S. On the Witt vector Frobenius, Proc. Am. Math. Soc., Volume 142 (2014), pp. 2211-2226 | DOI | MR | Zbl

[23.] de Jong, A. J. Smoothness, semi-stability and alterations, Publ. Math. IHÉS, Volume 83 (1996), pp. 51-93 | DOI | MR | Zbl

[24.] Deligne, P.; Illusie, L. Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987), pp. 247-270 | DOI | MR | Zbl

[25.] T. Ekedahl, Answer on Mathoverflow, http://mathoverflow.net/questions/21023/liftability-of-enriques-surfaces-from-char-p-to-zero.

[26.] Elkik, R. Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973), pp. 553-603 | DOI | MR | Zbl

[27.] Faltings, G. p-adic Hodge theory, J. Am. Math. Soc., Volume 1 (1988), pp. 255-299 | MR | Zbl

[28.] Faltings, G. Integral crystalline cohomology over very ramified valuation rings, J. Am. Math. Soc., Volume 12 (1999), pp. 117-144 | DOI | MR | Zbl

[29.] Faltings, G. Almost étale extensions, Astérisque, Volume 279 (2002), pp. 185-270 (Cohomologies p -adiques et applications arithmétiques, II) | Zbl

[30.] Fargues, L. Quelques résultats et conjectures concernant la courbe, Astérisque, Volume 369 (2015), pp. 325-374 | MR | Zbl

[31.] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique, available at http://webusers.imj-prg.fr/~laurent.fargues/Courbe_fichier_principal.pdf.

[32.] Fontaine, J.-M. Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. Math., Volume 115 (1982), pp. 529-577 | DOI | MR | Zbl

[33.] Fontaine, J.-M. Perfectoïdes, presque pureté et monodromie-poids (d’après Peter Scholze), Astérisque, Volume 352 (2013), pp. 509-534 (Exp. No. 1057, x. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058) | Zbl

[34.] Fontaine, J.-M.; Messing, W. p-adic periods and p-adic étale cohomology, Current Trends in Arithmetical Algebraic Geometry (1987), pp. 179-207 | DOI

[35.] J.-M. Fontaine and Y. Ouyang, Theory of p-adic Galois representations, available at https://www.math.u-psud.fr/~fontaine/galoisrep.pdf.

[36.] Gabber, O. On space filling curves and Albanese varieties, Geom. Funct. Anal., Volume 11 (2001), pp. 1192-1200 | DOI | MR | Zbl

[37.] Gabber, O.; Ramero, L. Almost Ring Theory, Springer, Berlin, 2003 (vi+307 pp.) | Zbl

[38.] O. Gabber and L. Ramero, Foundations of almost ring theory, http://math.univ-lille1.fr/~ramero/hodge.pdf.

[39.] Geisser, T.; Hesselholt, L. The de Rham-Witt complex and p-adic vanishing cycles, J. Am. Math. Soc., Volume 19 (2006), pp. 1-36 | DOI | MR | Zbl

[40.] Hesselholt, L. On the topological cyclic homology of the algebraic closure of a local field, An Alpine Anthology of Homotopy Theory, Am. Math. Soc., Providence, 2006, pp. 133-162 | DOI

[41.] Huber, R. A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994), pp. 513-551 | DOI | MR | Zbl

[42.] Huber, R. Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Vieweg, Braunschweig, 1996 | DOI | Zbl

[43.] Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | DOI | Zbl

[44.] Illusie, L.; Raynaud, M. Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, Volume 57 (1983), pp. 73-212 | DOI | Zbl

[45.] Katz, N. M. p-adic properties of modular schemes and modular forms, Modular Functions of One Variable III, 1973, pp. 69-190 | DOI

[46.] Kedlaya, K. S. Nonarchimedean geometry of Witt vectors, Nagoya Math. J., Volume 209 (2013), pp. 111-165 | DOI | MR | Zbl

[47.] K. S. Kedlaya, Some ring-theoretic properties of A_inf, | arXiv

[48.] Kedlaya, K. S.; Liu, R. Relative p-adic Hodge theory: foundations, Astérisque, Volume 371 (2015), p. 239 | MR | Zbl

[49.] Kisin, M. Crystalline representations and F-crystals, Algebraic Geometry and Number Theory, Birkhäuser Boston, Boston, 2006, pp. 459-496 | DOI

[50.] Kisin, M. Integral models for Shimura varieties of Abelian type, J. Am. Math. Soc., Volume 23 (2010), pp. 967-1012 | DOI | MR | Zbl

[51.] Lang, W. E. On Enriques surfaces in characteristic p. I, Math. Ann., Volume 265 (1983), pp. 45-65 | DOI | MR | Zbl

[52.] Langer, A.; Zink, T. De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 | DOI | MR | Zbl

[53.] Liedtke, C. Arithmetic moduli and lifting of Enriques surfaces, J. Reine Angew. Math., Volume 706 (2015), pp. 35-65 | MR | Zbl

[54.] Lütkebohmert, W. Formal-algebraic and rigid-analytic geometry, Math. Ann., Volume 286 (1990), pp. 341-371 | DOI | MR | Zbl

[55.] Poonen, B. Bertini theorems over finite fields, Ann. Math., Volume 160 (2004), pp. 1099-1127 | DOI | MR | Zbl

[56.] Raynaud, M.; Gruson, L. Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl

[57.] Schlessinger, M. Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl

[58.] Scholze, P. Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 245-313 | DOI | MR | Zbl

[59.] Scholze, P. p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, Volume 1 (2013) (77) | DOI | MR | Zbl

[60.] Scholze, P. Perfectoid spaces: a survey, Current Developments in Mathematics 2012, International Press, Somerville, 2013, pp. 193-227

[61.] Scholze, P. p-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi, Volume 4 (2016) (4) | DOI | MR | Zbl

[62.] P. Scholze and J. Weinstein, p-adic geometry, Lecture notes from course at UC Berkeley in Fall 2014, available at https://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.

[63.] F. Tan and J. Tong, Crystalline comparison isomorphisms in p-adic hodge theory: the absolutely unramified case, available at | arXiv

[64.] Tsuji, T. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411 | DOI | MR | Zbl

[65.] van der Kallen, W. Descent for the K-theory of polynomial rings, Math. Z., Volume 191 (1986), pp. 405-415 | DOI | MR | Zbl

Cité par Sources :