Let be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let be an ample line bundle on . Assume that the pair is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point there exist a Kähler-Einstein Fano manifold and a positive integer dividing such that is very ample and such that the germ is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of . We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing on is asymptotic at a polynomial rate near to the natural Ricci-flat Kähler cone metric on constructed using the Calabi ansatz. In particular, our result applies if is a nodal quintic threefold in . This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.
@article{PMIHES_2017__126__73_0, author = {Hein, Hans-Joachim and Sun, Song}, title = {Calabi-Yau manifolds with isolated conical singularities}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {73--130}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {126}, year = {2017}, doi = {10.1007/s10240-017-0092-1}, mrnumber = {3735865}, zbl = {1397.32009}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-017-0092-1/} }
TY - JOUR AU - Hein, Hans-Joachim AU - Sun, Song TI - Calabi-Yau manifolds with isolated conical singularities JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 73 EP - 130 VL - 126 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-017-0092-1/ DO - 10.1007/s10240-017-0092-1 LA - en ID - PMIHES_2017__126__73_0 ER -
%0 Journal Article %A Hein, Hans-Joachim %A Sun, Song %T Calabi-Yau manifolds with isolated conical singularities %J Publications Mathématiques de l'IHÉS %D 2017 %P 73-130 %V 126 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-017-0092-1/ %R 10.1007/s10240-017-0092-1 %G en %F PMIHES_2017__126__73_0
Hein, Hans-Joachim; Sun, Song. Calabi-Yau manifolds with isolated conical singularities. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 73-130. doi : 10.1007/s10240-017-0092-1. http://www.numdam.org/articles/10.1007/s10240-017-0092-1/
[1.] Manifolds, Tensor Analysis, and Applications (1988) | DOI | Zbl
[2.] Obstruction-flat asymptotically locally Euclidean metrics, Geom. Funct. Anal., Volume 22 (2012), pp. 832-877 | DOI | MR | Zbl
[3.] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | DOI | Numdam | Zbl
[4.] On cscK resolutions of conically singular cscK varieties, J. Funct. Anal., Volume 271 (2016), pp. 474-494 | DOI | MR | Zbl
[5.] Lectures on Kähler Manifolds (2006) | DOI | Zbl
[6.] Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (1987), pp. 11-40
[7.] Le lieu réduit et le lieu normal d’un morphisme, Romanian-Finnish Seminar on Complex Analysis (1979), pp. 389-398 | DOI
[8.] On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities, Q. J. Math., Volume 64 (2013), pp. 981-1007 | DOI | MR | Zbl
[9.] Heat Kernels and Dirac Operators (2004) | Zbl
[10.] -Polystability of -Fano varieties admitting Kähler-Einstein metrics, Invent. Math., Volume 203 (2016), pp. 973-1025 | DOI | MR | Zbl
[11.] Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians, Adv. Math., Volume 285 (2015), pp. 980-1024 | DOI | MR | Zbl
[12.] Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér. (4), Volume 12 (1979), pp. 269-294 | DOI | Numdam | MR | Zbl
[13.] Comments on conifolds, Nucl. Phys. B, Volume 342 (1990), pp. 246-268 | DOI | MR
[14.] Y-M. Chan, Calabi-Yau and Special Lagrangian 3-folds with conical singularities and their desingularizations, D.Phil. thesis, University of Oxford, 2005, https://people.maths.ox.ac.uk/joyce/theses/theses.html.
[15.] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983), pp. 575-657 | DOI | MR | Zbl
[16.] On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math., Volume 118 (1994), pp. 493-571 | DOI | MR | Zbl
[17.] On uniqueness of tangent cones for Einstein manifolds, Invent. Math., Volume 196 (2014), pp. 515-588 | DOI | MR | Zbl
[18.] T. Collins and G. Székelyhidi, -Semistability for irregular Sasakian manifolds, J. Differ. Geom., preprint, | arXiv
[19.] Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J., Volume 162 (2013), pp. 2855-2900 | DOI | MR | Zbl
[20.] R. Conlon and H-J. Hein, Asymptotically conical Calabi-Yau manifolds, III, preprint, | arXiv
[21.] Degenerate complex Monge-Ampère equations over compact Kähler manifolds, Int. J. Math., Volume 21 (2010), pp. 357-405 | DOI | Zbl
[22.] Kähler-Einstein Metrics and Algebraic Structures on Limit Spaces (2016), pp. 85-94 | Zbl
[23.] Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., Volume 213 (2014), pp. 63-106 | DOI | MR | Zbl
[24.] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., preprint, | arXiv
[25.] Singular Kähler-Einstein metrics, J. Am. Math. Soc., Volume 22 (2009), pp. 607-639 | DOI | Zbl
[26.] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Am. J. Math., preprint, | arXiv
[27.] Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble), Volume 55 (2005), pp. 825-890 | DOI | Numdam | MR | Zbl
[28.] Einstein manifolds and conformal field theories, Phys. Rev. D (3), Volume 59 (1999) (8 pp.) | DOI | MR
[29.] H-J. Hein and A. Naber, Isolated Einstein singularities with singular tangent cones, in preparation.
[30.] estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[31.] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 2145-2209 | DOI | Numdam | MR | Zbl
[32.] Special Lagrangian submanifolds with isolated conical singularities, I, Ann. Glob. Anal. Geom., Volume 25 (2004), pp. 201-251 | DOI | MR | Zbl
[33.] Special Lagrangian submanifolds with isolated conical singularities, III, Ann. Glob. Anal. Geom., Volume 26 (2005), pp. 1-58 | DOI | Zbl
[34.] C. Li, Minimizing normalized volumes of valuations, preprint, | arXiv
[35.] C. Li and Y-C. Liu, Kähler-Einstein metrics and volume minimization, preprint, | arXiv
[36.] C. Li and C. Xu, Stability of valuations and Kollár components, preprint, | arXiv
[37.] Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys., Volume 280 (2007), pp. 611-673 | DOI | MR | Zbl
[38.] Elliptic theory of edge operators, I, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1615-1664 | DOI | MR | Zbl
[39.] Multiple Integrals in the Calculus of Variations (2008) | DOI | Zbl
[40.] Desingularizing isolated conical singularities, Commun. Anal. Geom., Volume 21 (2013), pp. 105-170 | DOI | Zbl
[41.] Continuity of extremal transitions and flops for Calabi-Yau manifolds, J. Differ. Geom., Volume 89 (2011), pp. 233-269 | DOI | MR | Zbl
[42.] Versal deformation of algebraic hypersurfaces with isolated singularities, Math. Ann., Volume 313 (1999), pp. 297-314 | DOI | MR | Zbl
[43.] Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2), Volume 118 (1983), pp. 525-571 | DOI | MR | Zbl
[44.] Symplectic surgeries from singularities, Turk. J. Math., Volume 27 (2003), pp. 231-250 | MR | Zbl
[45.] On a conjecture of Candelas and de la Ossa, Commun. Math. Phys., Volume 334 (2015), pp. 697-717 | DOI | MR | Zbl
[46.] Deformations of nodal Kähler-Einstein del Pezzo surfaces with discrete automorphism groups, J. Lond. Math. Soc., Volume 89 (2014), pp. 539-558 | DOI | MR | Zbl
[47.] Existence and deformations of Kähler-Einstein metrics on smoothable -Fano varieties, Duke Math. J., Volume 165 (2016), pp. 3043-3083 | DOI | MR | Zbl
[48.] Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscr. Math., Volume 80 (1993), pp. 151-163 | DOI | MR | Zbl
[49.] Limits of Calabi-Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc., Volume 11 (2009), pp. 755-776 | DOI | MR | Zbl
[50.] Removable singularities in Yang-Mills fields, Commun. Math. Phys., Volume 83 (1982), pp. 11-29 | DOI | MR | Zbl
[51.] C. van Coevering, A construction of complete Ricci-flat Kähler manifolds, preprint, | arXiv
[52.] B. Vertman, Ricci flow on singular manifolds, preprint, | arXiv
[53.] On the Kähler-Ricci flows near the Mukai-Umemura 3-fold, Int. Math. Res. Not., Volume 2016 (2015), pp. 2145-2156 | DOI
[54.] Deformation of complete intersections with singularities, Math. Z., Volume 179 (1982), pp. 473-491 | DOI | MR | Zbl
[55.] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | DOI | Zbl
Cité par Sources :