We introduce and study stochastic -particle ensembles which are discretizations for general- log-gases of random matrix theory. The examples include random tilings, families of non-intersecting paths, -measures, etc. We prove that under technical assumptions on general analytic potential, the global fluctuations for such ensembles are asymptotically Gaussian as . The covariance is universal and coincides with its counterpart in random matrix theory.
Our main tool is an appropriate discrete version of the Schwinger-Dyson (or loop) equations, which originates in the work of Nekrasov and his collaborators.
@article{PMIHES_2017__125__1_0, author = {Borodin, Alexei and Gorin, Vadim and Guionnet, Alice}, title = {Gaussian asymptotics of discrete $\beta $-ensembles}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--78}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {125}, year = {2017}, doi = {10.1007/s10240-016-0085-5}, mrnumber = {3668648}, zbl = {1406.60008}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-016-0085-5/} }
TY - JOUR AU - Borodin, Alexei AU - Gorin, Vadim AU - Guionnet, Alice TI - Gaussian asymptotics of discrete $\beta $-ensembles JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 1 EP - 78 VL - 125 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-016-0085-5/ DO - 10.1007/s10240-016-0085-5 LA - en ID - PMIHES_2017__125__1_0 ER -
%0 Journal Article %A Borodin, Alexei %A Gorin, Vadim %A Guionnet, Alice %T Gaussian asymptotics of discrete $\beta $-ensembles %J Publications Mathématiques de l'IHÉS %D 2017 %P 1-78 %V 125 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-016-0085-5/ %R 10.1007/s10240-016-0085-5 %G en %F PMIHES_2017__125__1_0
Borodin, Alexei; Gorin, Vadim; Guionnet, Alice. Gaussian asymptotics of discrete $\beta $-ensembles. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 1-78. doi : 10.1007/s10240-016-0085-5. http://www.numdam.org/articles/10.1007/s10240-016-0085-5/
[AM] Properties of loop equations for the Hermitian matrix model and for two-dimensional gravity, Mod. Phys. Lett. A, Volume 5 (1990), pp. 1753-1763 | DOI | MR | Zbl
[AGZ] Introduction to Random Matrices (2009) | DOI | Zbl
[BBDT] A model for the bus system in Cuernevaca (Mexico), J. Phys. A, Math. Gen., Volume 39 (2006), p. 8965 (arXiv:math/0510414) | DOI | Zbl
[BKMM] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin and P. D. Miller, Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles, | arXiv
[BFG] Transport maps for Beta-matrix models and universality, Commun. Math. Phys., Volume 338 (2015), pp. 589-619 (arXiv:1311.2315) | DOI | Zbl
[BeGu] Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Relat. Fields, Volume 108 (1997), pp. 517-542 | DOI | MR | Zbl
[BDE] Breakdown of universality in multi-cut matrix models, J. Phys. A, Math. Gen., Volume 33 (2000), p. 6739 (arXiv:cond-mat/0003324) | DOI | MR | Zbl
[B1] Schur dynamics of the Schur processes, Adv. Math., Volume 228 (2011), pp. 2268-2291 (arXiv:1001.3442) | DOI | MR | Zbl
[B2] CLT for spectra of submatrices of Wigner random matrices, Mosc. Math. J., Volume 14 (2014), pp. 29-38 (arXiv:1010.0898) | MR | Zbl
[BF] Anisotropic growth of random surfaces in dimensions, Commun. Math. Phys., Volume 325 (2014), pp. 603-684 (arXiv:0804.3035) | DOI | MR | Zbl
[BoGo] Shuffling algorithm for boxed plane partitions, Adv. Math., Volume 220 (2009), pp. 1739-1770 (arXiv:0804.3071) | DOI | MR | Zbl
[BoGo2] General beta Jacobi corners process and the Gaussian Free Field, Commun. Pure Appl. Math., Volume 68 (2015), pp. 1683-1884 (arXiv:1305.3627) | DOI | Zbl
[BO1] Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, Ann. Math., Volume 161 (2005), pp. 1319-1422 (arXiv:math/0109194) | DOI | MR | Zbl
[BO2] Asymptotics of Plancherel-type random partitions, J. Algebra, Volume 313 (2007), pp. 40-60 (arXiv:math/0610240) | DOI | MR | Zbl
[BP] Integrable probability: from representation theory to Macdonald processes, Probab. Surv., Volume 11 (2014), pp. 1-58 (arXiv:1310.8007) | DOI | MR | Zbl
[BoGu1] Asymptotic expansion of beta matrix models in the one-cut regime, Commun. Math. Phys., Volume 317 (2013), pp. 447-483 (arXiv:1107.1167) | DOI | Zbl
[BoGu2] Asymptotic expansion of beta matrix models in the multi-cut regime, Commun. Math. Phys., Volume 317 (2013), pp. 447-483 (arXiv:1303.1045) | DOI | Zbl
[BEY] Edge universality of beta ensembles, Commun. Math. Phys., Volume 332 (2014), pp. 261-353 (arXiv:1306.5728) | DOI | MR | Zbl
[BPS] On the statistical mechanics approach in the random matrix theory: integrated density of states, J. Stat. Phys., Volume 79 (1995), pp. 585-611 | DOI | MR | Zbl
[BD] J. Breuer and M. Duits, Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients, J. Amer. Math. Soc. | arXiv
[BIPZ] Planar diagrams, Commun. Math. Phys., Volume 59 (1978), pp. 35-51 | DOI | MR | Zbl
[BuGo] Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., Volume 25 (2015), pp. 763-814 (arXiv:1311.5780) | DOI | MR | Zbl
[BuGo2] A. Bufetov and V. Gorin, Fluctuations of particle systems determined by Schur generating functions, | arXiv
[Cha] S. Chatterjee, Rigorous solution of strongly coupled lattice gauge theory in the large limit, | arXiv
[CE] Matrix eigenvalue model: Feynman graph technique for all genera, J. High Energy Phys., Volume 0612 (2006) (arXiv:math-ph/0604014) | DOI | MR | Zbl
[CJY] Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Volume 25 (2015), pp. 1232-1278 (arXiv:1212.5414) | DOI | MR | Zbl
[CLP] The shape of a typical boxed plane partition, N.Y. J. Math., Volume 4 (1998), pp. 137-165 (arXiv:math/9801059) | MR | Zbl
[CGM] Asymptotics of unitary and orthogonal matrix integrals, Adv. Math., Volume 222 (2009), pp. 172-215 (arXiv:math/0608193) | DOI | MR | Zbl
[DF] Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 7 (2016), pp. 1193-1282 (arXiv:1402.4615) | MR | Zbl
[DS] Constrained energy problems with applications to orthogonal polynomials of a discrete variable, J. Anal. Math., Volume 72 (1997), pp. 223-259 | DOI | MR | Zbl
[Du] Theta functions and non-linear equations, Russ. Math. Surv., Volume 36 (1981), pp. 11-92 | DOI | Zbl
[Ey1] All genus correlation functions for the hermitian 1-matrix model, J. High Energy Phys., Volume 0411 (2004) (arXiv:hep-th/0407261) | DOI
[Ey2] All order asymptotic expansion of large partitions, J. Stat. Mech. Theory Exp., Volume 2008 (2008) | DOI | MR
[Ey3] A matrix model for plane partitions, J. Stat. Mech. Theory Exp., Volume 0910 (2009) | DOI | MR
[EO] Topological recursion in enumerative geometry and random matrices, J. Phys. A, Volume 42 (2009) | DOI | MR | Zbl
[Fe] On large deviations for the spectral measure of discrete Coulomb gas, Seminaire de Probabilites XLI Lecture Notes in Mathematics (2008), pp. 19-49
[Fo] Log-Gases and Random Matrices (2010) | Zbl
[G] Non-intersecting paths and Hahn orthogonal ensemble, Funct. Anal. Appl., Volume 42 (2008), pp. 180-197 (arXiv:0708.2349) | DOI | MR | Zbl
[GS] Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Relat. Fields, Volume 163 (2015), p. 413 (arXiv:1401.5595) | DOI | MR | Zbl
[GN] Asymptotics of unitary multimatrix models: the Schwinger–Dyson lattice and topological recursion, J. Funct. Anal., Volume 268 (2015), pp. 2851-2905 | DOI | MR | Zbl
[HO] Quantum Probability and Spectral Analysis of Graphs (2007) | Zbl
[J1] On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., Volume 91 (1998), pp. 151-204 | DOI | MR | Zbl
[J2] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. (2), Volume 153 (2001), pp. 259-296 (math.CO/9906120) | DOI | MR | Zbl
[J3] Shape fluctuations and random matrices, Commun. Math. Phys., Volume 209 (2000), pp. 437-476 (arXiv:math/9903134) | DOI | MR | Zbl
[J4] Non-intersecting paths, random tilings and random matrices, Probab. Theory Relat. Fields, Volume 123 (2002), pp. 225-280 (arXiv:math/0011250) | DOI | MR | Zbl
[JN] Eigenvalues of GUE minors, Electron. J. Probab., Volume 11 (2006), p. 50 (arXiv:math/0606760) | DOI | MR | Zbl
[K] Height fluctuations in the honeycomb dimer model, Commun. Math. Phys., Volume 281 (2008), pp. 675-709 (arXiv:math-ph/0405052) | DOI | MR | Zbl
[KO] Limit shapes and the complex burgers equation, Acta Math., Volume 199 (2007), pp. 263-302 (arXiv:math-ph/0507007) | DOI | MR | Zbl
[KOR] Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles, Electron. J. Probab., Volume 7 (2002), pp. 1-24 | DOI | MR
[KS] T. Kriecherbauer and M. Shcherbina, Fluctuations of eigenvalues of matrix models and their applications, | arXiv
[Ma] Symmetric Functions and Hall Polynomials (1999) | Zbl
[1] Free transport-entropy inequalities for non-convex potentials and application to concentration for random matrices, Probab. Theory Relat. Fields, Volume 159 (2014), pp. 329-356 (arXiv:1204.3208) | DOI | MR | Zbl
[Me] Random Matrices (2004) | Zbl
[Mo] A. Moll, in preparation.
[Mi] Loop equations and expansion, Phys. Rep., Volume 102 (1983), pp. 199-290 | DOI
[NS] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories, High Energy Physics - Theory, (2013), 1–83, | arXiv
[NP] N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional quiver gauge theories, | arXiv
[N] N. Nekrasov, Non-perturbative Dyson–Schwinger equations and BPS/CFT correspondence, in preparation.
[O] The problem of harmonic analysis on the infinite-dimensional unitary group, J. Funct. Anal., Volume 205 (2003), pp. 464-524 (arXiv:math/0109193) | DOI | MR | Zbl
[O2] Probability measures on dual objects to compact symmetric spaces and hypergeometric identities, Funct. Anal. Appl., Volume 37 (2001), pp. 281-301 | DOI | MR
[Ox] The Oxford Handbook of Random Matrix Theory (2011) | Zbl
[PS] Eigenvalue Distribution of Large Random Matrices (2011) | DOI | Zbl
[P1] Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, Volume 160 (2014), pp. 429-487 (arXiv:1202.3901) | DOI | MR | Zbl
[P2] Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., Volume 43 (2015), pp. 1-43 (arXiv:1206.5123) | DOI | MR | Zbl
[ST] Logarithmic Potentials with External Fields (1997) | DOI | Zbl
[Shch] Fluctuations of linear eigenvalue statistics of matrix models in the multi-cut regime, J. Stat. Phys., Volume 151 (2013), pp. 1004-1034 (arXiv:1205.7062) | DOI | MR | Zbl
[Wi] On the distribution of the roots of certain symmetric matrices, Ann. Math., Volume 67 (1958), pp. 325-327 | DOI | MR | Zbl
Cité par Sources :