We prove that the moduli space of compact genus three Riemann surfaces contains only finitely many algebraically primitive Teichmüller curves. For the stratum , consisting of holomorphic one-forms with a single zero, our approach to finiteness uses the Harder-Narasimhan filtration of the Hodge bundle over a Teichmüller curve to obtain new information on the locations of the zeros of eigenforms. By passing to the boundary of moduli space, this gives explicit constraints on the cusps of Teichmüller curves in terms of cross-ratios of six points on .
These constraints are akin to those that appear in Zilber and Pink’s conjectures on unlikely intersections in diophantine geometry. However, in our case one is lead naturally to the intersection of a surface with a family of codimension two algebraic subgroups of (rather than the more standard ). The ambient algebraic group lies outside the scope of Zilber’s Conjecture but we are nonetheless able to prove a sufficiently strong height bound.
For the generic stratum , we obtain global torsion order bounds through a computer search for subtori of a codimension-two subvariety of . These torsion bounds together with new bounds for the moduli of horizontal cylinders in terms of torsion orders yields finiteness in this stratum. The intermediate strata are handled with a mix of these techniques.
@article{PMIHES_2016__124__1_0, author = {Bainbridge, Matt and Habegger, Philipp and M\"oller, Martin}, title = {Teichm\"uller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--98}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {124}, year = {2016}, doi = {10.1007/s10240-016-0084-6}, mrnumber = {3578914}, zbl = {1357.14038}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-016-0084-6/} }
TY - JOUR AU - Bainbridge, Matt AU - Habegger, Philipp AU - Möller, Martin TI - Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$ JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 1 EP - 98 VL - 124 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-016-0084-6/ DO - 10.1007/s10240-016-0084-6 LA - en ID - PMIHES_2016__124__1_0 ER -
%0 Journal Article %A Bainbridge, Matt %A Habegger, Philipp %A Möller, Martin %T Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$ %J Publications Mathématiques de l'IHÉS %D 2016 %P 1-98 %V 124 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-016-0084-6/ %R 10.1007/s10240-016-0084-6 %G en %F PMIHES_2016__124__1_0
Bainbridge, Matt; Habegger, Philipp; Möller, Martin. Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$. Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 1-98. doi : 10.1007/s10240-016-0084-6. http://www.numdam.org/articles/10.1007/s10240-016-0084-6/
[Aul] D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum, Ergod. Theory Dyn. Syst., to appear. | MR
[Bai07] Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | DOI | MR | Zbl
[BG06] Heights in Diophantine Geometry (2006) | MR | Zbl
[BLR90] Néron Models (1990) | DOI | MR | Zbl
[BM76] Graph Theory with Applications (1976) | DOI | MR | Zbl
[BM10] Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. Math. (2), Volume 172 (2010), pp. 139-185 | DOI | MR | Zbl
[BM12] The Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3, Acta Math., Volume 208 (2012), pp. 1-92 | DOI | MR | Zbl
[BM14] The locus of real multiplication and the Schottky locus, J. Reine Angew. Math., Volume 686 (2014), pp. 167-186 | MR | Zbl
[BMZ99] Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Not., Volume 20 (1999), pp. 1119-1140 | DOI | MR | Zbl
[BMZ07] Anomalous subvarieties—structure theorems and applications, Int. Math. Res. Not., Volume 2007 (2007) | DOI | MR | Zbl
[BMZ08a] On unlikely intersections of complex varieties with tori, Acta Arith., Volume 133 (2008), pp. 309-323 | DOI | MR | Zbl
[BMZ08b] Intersecting a plane with algebraic subgroups of multiplicative groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 7 (2008), pp. 51-80 | Numdam | MR | Zbl
[Cal04] Veech surfaces and complete periodicity in genus two, J. Am. Math. Soc., Volume 17 (2004), pp. 871-908 | DOI | MR | Zbl
[CM12] Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012), pp. 2427-2479 | DOI | MR | Zbl
[Dil01] Green’s functions, electric networks, and the geometry of hyperbolic Riemann surfaces, Ill. J. Math., Volume 45 (2001), pp. 453-485 | MR | Zbl
[Dob79] On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., Volume 34 (1979), pp. 391-401 | DOI | MR | Zbl
[EM] A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space, | arXiv
[EMM] Isolation, equidistribution, and orbit closures for the SL(2,R) action on moduli space, Ann. Math. (2), Volume 182 (2015), pp. 673-721 | DOI | MR | Zbl
[FH79] A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. Math. (2), Volume 110 (1979), pp. 159-166 | DOI | MR | Zbl
[FLP79] Travaux de Thurston sur les surfaces, Séminaire Orsay, with an English Summary (1979) | Numdam | MR | Zbl
[Ful84] Intersection Theory (1984) | DOI | MR | Zbl
[GJ00] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000), pp. 191-213 | DOI | MR | Zbl
[GP08] A Singular Introduction to Commutative Algebra (2008) With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh and UNIX) | MR | Zbl
[Hab] P. Habegger, Effective height upper bounds on algebraic tori, | arXiv
[Hab08] Intersecting subvarieties of with algebraic subgroups, Math. Ann., Volume 342 (2008), pp. 449-466 | DOI | MR | Zbl
[Hab09] On the bounded height conjecture, Int. Math. Res. Not., Volume 5 (2009), pp. 860-886 | MR | Zbl
[Har77] Algebraic Geometry (1977) | DOI | MR | Zbl
[HK] J. Hubbard and S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, | arXiv | Zbl
[HL10] The geometry of moduli spaces of sheaves (2010) | DOI | MR | Zbl
[HM82] On the Kodaira dimension of the moduli space of curves, Invent. Math., Volume 67 (1982), pp. 23-88 (with an appendix by William Fulton) | DOI | MR | Zbl
[HM98] Moduli of Curves (1998) | MR | Zbl
[HS00] Diophantine geometry: An Introduction (2000) | DOI | MR | Zbl
[KS00] Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000), pp. 65-108 | DOI | MR | Zbl
[KZ03] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 | DOI | MR | Zbl
[Lan62] Diophantine geometry (1962) | MR | Zbl
[Lau84] Équations diophantiennes exponentielles, Invent. Math., Volume 78 (1984), pp. 299-327 | DOI | MR | Zbl
[Mas75] On a class of geodesics in Teichmüller space, Ann. Math. (2), Volume 102 (1975), pp. 205-221 | DOI | MR | Zbl
[Mau08] Courbes algébriques et équations multiplicatives, Math. Ann., Volume 341 (2008), pp. 789-824 | DOI | MR | Zbl
[McM94] Complex Dynamics and Renormalization (1994) | MR | Zbl
[McM03] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Am. Math. Soc., Volume 16 (2003), pp. 857-885 | DOI | MR | Zbl
[McM06a] Prym varieties and Teichmüller curves, Duke Math. J., Volume 133 (2006), pp. 569-590 | DOI | MR | Zbl
[McM06b] Teichmüller curves in genus two: torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006), pp. 651-672 | DOI | MR | Zbl
[Möl06a] Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math., Volume 165 (2006), pp. 633-649 | DOI | MR | Zbl
[Möl06b] Variations of Hodge structures of a Teichmüller curve, J. Am. Math. Soc., Volume 19 (2006), pp. 327-344 (electronic) | DOI | MR | Zbl
[Möl08] Finiteness results for Teichmüller curves, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 63-83 | DOI | Numdam | MR | Zbl
[Möl11] Shimura and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011), pp. 1-32 | DOI | MR | Zbl
[Möl13] Teichmüller curves, mainly from the point of view of algebraic geometry, Moduli Spaces of Riemann Surfaces (2013), pp. 267-318 | DOI | MR | Zbl
[MW] Hodge-Teichmüller planes and finiteness results for Teichmüller curves, Duke Math. J., Volume 164 (2015), pp. 1041-1077 | DOI | MR | Zbl
[NW] Non-Veech surfaces in are generic, Geom. Funct. Anal., Volume 24 (2014), pp. 1316-1335 | DOI | MR | Zbl
[Phi95] Sur des hauteurs alternatives. III, J. Math. Pures Appl. (9), Volume 74 (1995), pp. 345-365 | MR | Zbl
[Pin05] R. Pink, A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang, 2005, preprint, 13pp.
[PR14] Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces, Thin groups and superstrong approximation (2014), pp. 211-255 | MR | Zbl
[Raf07] Thick-thin decomposition for quadratic differentials, Math. Res. Lett., Volume 14 (2007), pp. 333-341 | DOI | MR | Zbl
[S+14] W. A. Stein et al., Sage mathematics software (Version 6.3). The sage development team, 2014, http://www.sagemath.org.
[Sch80] Diophantine Approximation (1980) | MR | Zbl
[Sch00] Polynomials with Special Regard to Reducibility (2000) (with an appendix by Umberto Zannier) | DOI | MR | Zbl
[Sil11] Height estimates for equidimensional dominant rational maps, J. Ramanujan Math. Soc., Volume 26 (2011), pp. 145-163 | MR | Zbl
[SW10] Characterizations of lattice surfaces, Invent. Math., Volume 180 (2010), pp. 535-557 | DOI | MR | Zbl
[Vee89] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989), pp. 553-583 | DOI | MR | Zbl
[Wol90] The hyperbolic metric and the geometry of the universal curve, J. Differ. Geom., Volume 31 (1990), pp. 417-472 | DOI | MR | Zbl
[Wri] The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol., Volume 18 (2014), pp. 1323-1341 | DOI | MR | Zbl
[YZ] F. Yu and K. Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents: upper bounds, | arXiv | Zbl
[YZ13] Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn., Volume 7 (2013), pp. 209-237 | DOI | MR | Zbl
[Zha95] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995), pp. 187-221 | DOI | MR | Zbl
[Zil02] Exponential sums equations and the Schanuel conjecture, J. Lond. Math. Soc. (2), Volume 65 (2002), pp. 27-44 | DOI | MR | Zbl
Cité par Sources :