Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs
Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 283-331.

For every smooth complex projective variety W of dimension d and nonnegative Kodaira dimension, we show the existence of a universal constant m depending only on d and two natural invariants of the very general fibres of an Iitaka fibration of W such that the pluricanonical system |mKW| defines an Iitaka fibration. This is a consequence of a more general result on polarized adjoint divisors. In order to prove these results we develop a generalized theory of pairs, singularities, log canonical thresholds, adjunction, etc.

DOI : 10.1007/s10240-016-0080-x
Mots-clés : Exceptional Divisor, Cartier Divisor, Kodaira Dimension, Picard Number, Generalize Adjunction
Birkar, Caucher 1 ; Zhang, De-Qi 2

1 DPMMS, Centre for Mathematical Sciences, University of Cambridge Wilberforce Road CB3 0WB Cambridge UK
2 Department of Mathematics, National University of Singapore 10 Lower Kent Ridge Road 119076 Singapore Singapore
@article{PMIHES_2016__123__283_0,
     author = {Birkar, Caucher and Zhang, De-Qi},
     title = {Effectivity of {Iitaka} fibrations and pluricanonical systems of polarized pairs},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {283--331},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     year = {2016},
     doi = {10.1007/s10240-016-0080-x},
     zbl = {1348.14038},
     mrnumber = {3502099},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-016-0080-x/}
}
TY  - JOUR
AU  - Birkar, Caucher
AU  - Zhang, De-Qi
TI  - Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 283
EP  - 331
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-016-0080-x/
DO  - 10.1007/s10240-016-0080-x
LA  - en
ID  - PMIHES_2016__123__283_0
ER  - 
%0 Journal Article
%A Birkar, Caucher
%A Zhang, De-Qi
%T Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 283-331
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-016-0080-x/
%R 10.1007/s10240-016-0080-x
%G en
%F PMIHES_2016__123__283_0
Birkar, Caucher; Zhang, De-Qi. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 283-331. doi : 10.1007/s10240-016-0080-x. https://www.numdam.org/articles/10.1007/s10240-016-0080-x/

[1.] Birkar, C. On existence of log minimal models, Compos. Math., Volume 145 (2009), pp. 1442-1446 | DOI | MR | Zbl

[2.] Birkar, C. Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 325-368 | DOI | Numdam | MR | Zbl

[3.] Birkar, C.; Cascini, P.; Hacon, C.; McKernan, J. Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | DOI | MR | Zbl

[4.] Birkar, C.; Hu, Z. Log canonical pairs with good augmented base loci, Compos. Math., Volume 150 (2014), pp. 579-592 | DOI | MR | Zbl

[5.] Di Cerbo, G. Uniform bounds for the Iitaka fibration, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 13 (2014), pp. 1133-1143 | MR | Zbl

[6.] Chen, J.; Chen, M. Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Super., Volume 43 (2010), pp. 365-394 | DOI | Numdam | MR | Zbl

[7.] Fujino, O.; Mori, S. A canonical bundle formula, J. Differ. Geom., Volume 56 (2000), pp. 167-188 | DOI | MR | Zbl

[8.] Hacon, C.; McKernan, J. Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006), pp. 1-25 | DOI | MR | Zbl

[9.] Hacon, C. D.; McKernan, J.; Xu, C. On the birational automorphisms of varieties of general type, Ann. Math. (2), Volume 177 (2013), pp. 1077-1111 | DOI | MR | Zbl

[10.] Hacon, C. D.; McKernan, J.; Xu, C. ACC for log canonical thresholds, Ann. Math. (2), Volume 180 (2014), pp. 523-571 | DOI | MR | Zbl

[11.] C. D. Hacon and C. Xu, Boundedness of log Calabi-Yau pairs of Fano type, Math. Res. Lett. (to appear), | arXiv

[12.] Iitaka, S. Deformations of compact complex surfaces, II, J. Math. Soc. Jpn., Volume 22 (1970), pp. 247-261 | DOI | MR | Zbl

[13.] Jiang, X. On the pluricanonical maps of varieties of intermediate Kodaira dimension, Math. Ann., Volume 356 (2013), pp. 979-1004 | DOI | MR | Zbl

[14.] Kawamata, Y. On the plurigenera of minimal algebraic 3-folds with KX0, Math. Ann., Volume 275 (1986), pp. 539-546 | DOI | MR | Zbl

[15.] Kawamata, Y. On the length of an extremal rational curve, Invent. Math., Volume 105 (1991), pp. 609-611 | DOI | MR | Zbl

[16.] Kawamata, Y. Subadjunction of log canonical divisors. II, Am. J. Math., Volume 120 (1998), pp. 893-899 | DOI | MR | Zbl

[17.] J. Kollár, et al., Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).

[18.] Kollár, J.; Mori, S. Birational geometry of algebraic varieties (1998) | DOI | Zbl

[19.] Pacienza, G. On the uniformity of the Iitaka fibration, Math. Res. Lett., Volume 16 (2009), pp. 663-681 | DOI | MR | Zbl

[20.] Shokurov, V. V. 3-fold log flips, With an appendix by Yujiro Kawamata, Russ. Acad. Sci. Izv. Math., Volume 40 (1993), pp. 95-202 | MR | Zbl

[21.] Takayama, S. Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006), pp. 551-587 | DOI | MR | Zbl

[22.] Todorov, G.; Xu, C. On Effective Log Iitaka Fibration for 3-folds and 4-folds, Algebra Number Theory, Volume 3 (2009), pp. 697-710 | DOI | MR | Zbl

[23.] Tsuji, H. Pluricanonical systems of projective varieties of general type I, Osaka J. Math., Volume 43 (2006), pp. 967-995 | MR | Zbl

[24.] Viehweg, E.; Zhang, D.-Q. Effective Iitaka fibrations, J. Algebraic Geom., Volume 18 (2009), pp. 711-730 | DOI | MR | Zbl

  • Figueroa, Fernando; Filipazzi, Stefano; Moraga, Joaquín; Peng, Junyao Complements and coregularity of Fano varieties, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.69
  • Han, Jingjun; Liu, Jihao On termination of flips and exceptionally noncanonical singularities, Geometry Topology, Volume 29 (2025) no. 1, p. 399 | DOI:10.2140/gt.2025.29.399
  • Zhu, Minzhe Boundedness of Stable Minimal Models With KLT Singularities, International Mathematics Research Notices, Volume 2025 (2025) no. 2 | DOI:10.1093/imrn/rnae293
  • Moraga, Joaquin; Svaldi, Roberto A geometric characterization of toric singularities, Journal de Mathématiques Pures et Appliquées, Volume 195 (2025), p. 103620 | DOI:10.1016/j.matpur.2024.103620
  • Bernasconi, Fabio; Filipazzi, Stefano Rational points on 3‐folds with nef anti‐canonical class over finite fields, Proceedings of the London Mathematical Society, Volume 130 (2025) no. 1 | DOI:10.1112/plms.70014
  • Truong, Tuyen Trung Bounded birationality and isomorphism problems are computable, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 65 (2024) no. 1, p. 129 | DOI:10.1007/s13366-022-00679-3
  • Hashizume, Kenta A note on lc‐trivial fibrations, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 2, p. 551 | DOI:10.1112/blms.12949
  • Liu, Jihao; Meng, Fanjun; Xie, Lingyao Complements, index theorem, and minimal log discrepancies of foliated surface singularities, European Journal of Mathematics, Volume 10 (2024) no. 1 | DOI:10.1007/s40879-023-00719-9
  • Chen, Guodu; Han, Jingjun; Liu, Jihao On Effective Log Iitaka Fibrations and Existence of Complements, International Mathematics Research Notices, Volume 2024 (2024) no. 10, p. 8329 | DOI:10.1093/imrn/rnad253
  • Li, Zhan Boundedness of the base varieties of certain fibrations, Journal of the London Mathematical Society, Volume 109 (2024) no. 2 | DOI:10.1112/jlms.12871
  • Liu, Jie; Ou, Wenhao; Wang, Juanyong; Yang, Xiaokui; Zhong, Guolei Algebraic fibre spaces with strictly nef relative anti‐log canonical divisor, Journal of the London Mathematical Society, Volume 109 (2024) no. 6 | DOI:10.1112/jlms.12942
  • CHEN, Weichung; GONGYO, Yoshinori; NAKAMURA, Yusuke On generalized minimal log discrepancy, Journal of the Mathematical Society of Japan, Volume 76 (2024) no. 2 | DOI:10.2969/jmsj/90119011
  • Tsakanikas, Nikolaos; Xie, Lingyao Remarks on the existence of minimal models of log canonical generalized pairs, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03489-6
  • Filipazzi, Stefano; Waldron, Joe Connectedness Principle for 3-Folds in Characteristic p>5, Michigan Mathematical Journal, Volume 74 (2024) no. 4 | DOI:10.1307/mmj/20216143
  • Hashizume, Kenta Finiteness of log Abundant log Canonical Pairs in log Minimal Model Program with Scaling, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20226207
  • Chen, Guodu; Han, Jingjun; Xue, Qingyuan Boundedness of Complements for Log Calabi–Yau Threefolds, Peking Mathematical Journal, Volume 7 (2024) no. 1, p. 1 | DOI:10.1007/s42543-022-00057-x
  • Hacon, Christopher D.; Xie, Lingyao ACC for generalized log canonical thresholds for complex analytic spaces, Science China Mathematics (2024) | DOI:10.1007/s11425-023-2260-4
  • Chen, Guo Du; Tsakanikas, Nikolaos On the Termination of Flips for Log Canonical Generalized Pairs, Acta Mathematica Sinica, English Series, Volume 39 (2023) no. 6, p. 967 | DOI:10.1007/s10114-023-0116-3
  • Liu, Jihao; Xie, Lingyao Semi-ampleness of NQC generalized log canonical pairs, Advances in Mathematics, Volume 427 (2023), p. 109126 | DOI:10.1016/j.aim.2023.109126
  • Hu, Zhengyu Existence of Canonical Models for Kawamata Log Terminal Pairs, Birational Geometry, Kähler–Einstein Metrics and Degenerations, Volume 409 (2023), p. 313 | DOI:10.1007/978-3-031-17859-7_15
  • Fujita, Kento; Liu, Yuchen; Süss, Hendrik; Zhang, Kewei; Zhuang, Ziquan On the Cheltsov–Rubinstein Conjecture, Birational Geometry, Kähler–Einstein Metrics and Degenerations, Volume 409 (2023), p. 865 | DOI:10.1007/978-3-031-17859-7_43
  • Chen, Guodu Boundedness of n-complements for generalized pairs, European Journal of Mathematics, Volume 9 (2023) no. 4 | DOI:10.1007/s40879-023-00693-2
  • Liu, Jihao Remark on complements on surfaces, Forum of Mathematics, Sigma, Volume 11 (2023) | DOI:10.1017/fms.2023.35
  • Filipazzi, Stefano; Svaldi, Roberto On the connectedness principle and dual complexes for generalized pairs, Forum of Mathematics, Sigma, Volume 11 (2023) | DOI:10.1017/fms.2023.25
  • Han, Jingjun; Liu, Jihao On effective birationality for sub-pairs, International Journal of Mathematics, Volume 34 (2023) no. 06 | DOI:10.1142/s0129167x23500295
  • Shokurov, Vyacheslav Vladimirovich Log adjunction: moduli part, Izvestiya: Mathematics, Volume 87 (2023) no. 3, p. 616 | DOI:10.4213/im9279e
  • BERNASCONI, FABIO; STIGANT, LIAM SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE AND MIXED CHARACTERISTIC, Nagoya Mathematical Journal, Volume 250 (2023), p. 365 | DOI:10.1017/nmj.2022.32
  • Liu, Jihao; Xie, Lingyao Relative Nakayama–Zariski Decomposition and Minimal Models of Generalized Pairs, Peking Mathematical Journal (2023) | DOI:10.1007/s42543-023-00076-2
  • Birkar, Caucher Geometry of polarised varieties, Publications mathématiques de l'IHÉS, Volume 137 (2023) no. 1, p. 47 | DOI:10.1007/s10240-022-00136-w
  • Liu, Jihao; Luo, Yujie; Meng, Fanjun On global ACC for foliated threefolds, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/9053
  • Shokurov, Vyacheslav Vladimirovich Log adjunction: moduli part, Известия Российской академии наук. Серия математическая, Volume 87 (2023) no. 3, p. 206 | DOI:10.4213/im9279
  • Zhang, Lei Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic, Algebra Number Theory, Volume 16 (2022) no. 10, p. 2339 | DOI:10.2140/ant.2022.16.2339
  • Han, Jingjun; Liu, Wenfei On a generalized canonical bundle formula for generically finite morphisms, Annales de l'Institut Fourier, Volume 71 (2022) no. 5, p. 2047 | DOI:10.5802/aif.3437
  • Hashizume, Kenta Iitaka fibrations for dlt pairs polarized by a nef and log big divisor, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.75
  • Chen, Guodu; Xue, Qingyuan Boundedness of (ϵ,n)-complements for projective generalized pairs of Fano type, Journal of Pure and Applied Algebra, Volume 226 (2022) no. 7, p. 106988 | DOI:10.1016/j.jpaa.2021.106988
  • Han, Jingjun; Li, Zhan Weak Zariski decompositions and log terminal models for generalized pairs, Mathematische Zeitschrift, Volume 302 (2022) no. 2, p. 707 | DOI:10.1007/s00209-022-03073-w
  • Hashizume, Kenta Non-vanishing theorem for generalized log canonical pairs with a polarization, Selecta Mathematica, Volume 28 (2022) no. 4 | DOI:10.1007/s00029-022-00795-x
  • Lazić, Vladimir; Tsakanikas, Nikolaos Special MMP for log canonical generalised pairs (with an appendix joint with Xiaowei Jiang), Selecta Mathematica, Volume 28 (2022) no. 5 | DOI:10.1007/s00029-022-00798-8
  • Codogni, Giulio; Tasin, Luca; Viviani, Filippo On some modular contractions of the moduli space of stable pointed curves, Algebra Number Theory, Volume 15 (2021) no. 5, p. 1245 | DOI:10.2140/ant.2021.15.1245
  • Di Cerbo, Gabriele; Svaldi, Roberto Birational boundedness of low-dimensional elliptic Calabi–Yau varieties with a section, Compositio Mathematica, Volume 157 (2021) no. 8, p. 1766 | DOI:10.1112/s0010437x2100717x
  • Birkar, C.; Chen, Y. Singularities on toric fibrations, Sbornik: Mathematics, Volume 212 (2021) no. 3, p. 288 | DOI:10.1070/sm9446
  • Li, Zhan Fujita’s conjecture on iterated accumulation points of pseudo-effective thresholds, Selecta Mathematica, Volume 27 (2021) no. 1 | DOI:10.1007/s00029-021-00622-9
  • Han, Jingjun; Li, Zhan On accumulation points of pseudo-effective thresholds, manuscripta mathematica, Volume 165 (2021) no. 3-4, p. 537 | DOI:10.1007/s00229-020-01220-3
  • Birkar, Caucher; Chen, Yifei Особенности торических расслоений, Математический сборник, Volume 212 (2021) no. 3, p. 20 | DOI:10.4213/sm9446
  • Dervan, Ruadhaí; Ross, Julius Stable maps in higher dimensions, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1033 | DOI:10.1007/s00208-018-1706-8
  • CATANESE, FABRIZIO; LI, BINRU ENRIQUES’ CLASSIFICATION IN CHARACTERISTIC 0$" height="12pt">: THE -THEOREM, Nagoya Mathematical Journal, Volume 235 (2019), p. 201 | DOI:10.1017/nmj.2018.8
  • Xu, Yanning Complements on log canonical Fano varieties, arXiv (2019) | DOI:10.48550/arxiv.1901.03891 | arXiv:1901.03891
  • Xu, Yanning Some Results about the Index Conjecture for log Calabi-Yau Pairs, arXiv (2019) | DOI:10.48550/arxiv.1905.00297 | arXiv:1905.00297
  • Fujino, Osamu; Liu, Haidong On normalization of quasi-log canonical pairs, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 94 (2018) no. 10 | DOI:10.3792/pjaa.94.97
  • Filipazzi, Stefano Boundedness of Log Canonical Surface Generalized Polarized Pairs, Taiwanese Journal of Mathematics, Volume 22 (2018) no. 4 | DOI:10.11650/tjm/171204
  • Filipazzi, Stefano Boundedness of Log Canonical Surface Generalized Polarized Pairs, arXiv (2017) | DOI:10.48550/arxiv.1706.09913 | arXiv:1706.09913
  • Hacon, Christopher D.; Xu, Chenyang Boundedness of log Calabi-Yau pairs of Fano type, arXiv (2014) | DOI:10.48550/arxiv.1410.8187 | arXiv:1410.8187

Cité par 52 documents. Sources : Crossref, NASA ADS