For every smooth complex projective variety of dimension and nonnegative Kodaira dimension, we show the existence of a universal constant depending only on and two natural invariants of the very general fibres of an Iitaka fibration of such that the pluricanonical system defines an Iitaka fibration. This is a consequence of a more general result on polarized adjoint divisors. In order to prove these results we develop a generalized theory of pairs, singularities, log canonical thresholds, adjunction, etc.
@article{PMIHES_2016__123__283_0, author = {Birkar, Caucher and Zhang, De-Qi}, title = {Effectivity of {Iitaka} fibrations and pluricanonical systems of polarized pairs}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {283--331}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {123}, year = {2016}, doi = {10.1007/s10240-016-0080-x}, zbl = {1348.14038}, mrnumber = {3502099}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-016-0080-x/} }
TY - JOUR AU - Birkar, Caucher AU - Zhang, De-Qi TI - Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 283 EP - 331 VL - 123 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-016-0080-x/ DO - 10.1007/s10240-016-0080-x LA - en ID - PMIHES_2016__123__283_0 ER -
%0 Journal Article %A Birkar, Caucher %A Zhang, De-Qi %T Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs %J Publications Mathématiques de l'IHÉS %D 2016 %P 283-331 %V 123 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-016-0080-x/ %R 10.1007/s10240-016-0080-x %G en %F PMIHES_2016__123__283_0
Birkar, Caucher; Zhang, De-Qi. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 283-331. doi : 10.1007/s10240-016-0080-x. http://www.numdam.org/articles/10.1007/s10240-016-0080-x/
[1.] On existence of log minimal models, Compos. Math., Volume 145 (2009), pp. 1442-1446 | DOI | MR | Zbl
[2.] Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 325-368 | DOI | Numdam | MR | Zbl
[3.] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | DOI | MR | Zbl
[4.] Log canonical pairs with good augmented base loci, Compos. Math., Volume 150 (2014), pp. 579-592 | DOI | MR | Zbl
[5.] Uniform bounds for the Iitaka fibration, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 13 (2014), pp. 1133-1143 | MR | Zbl
[6.] Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Super., Volume 43 (2010), pp. 365-394 | DOI | Numdam | MR | Zbl
[7.] A canonical bundle formula, J. Differ. Geom., Volume 56 (2000), pp. 167-188 | DOI | MR | Zbl
[8.] Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006), pp. 1-25 | DOI | MR | Zbl
[9.] On the birational automorphisms of varieties of general type, Ann. Math. (2), Volume 177 (2013), pp. 1077-1111 | DOI | MR | Zbl
[10.] ACC for log canonical thresholds, Ann. Math. (2), Volume 180 (2014), pp. 523-571 | DOI | MR | Zbl
[11.] C. D. Hacon and C. Xu, Boundedness of log Calabi-Yau pairs of Fano type, Math. Res. Lett. (to appear), | arXiv
[12.] Deformations of compact complex surfaces, II, J. Math. Soc. Jpn., Volume 22 (1970), pp. 247-261 | DOI | MR | Zbl
[13.] On the pluricanonical maps of varieties of intermediate Kodaira dimension, Math. Ann., Volume 356 (2013), pp. 979-1004 | DOI | MR | Zbl
[14.] On the plurigenera of minimal algebraic 3-folds with , Math. Ann., Volume 275 (1986), pp. 539-546 | DOI | MR | Zbl
[15.] On the length of an extremal rational curve, Invent. Math., Volume 105 (1991), pp. 609-611 | DOI | MR | Zbl
[16.] Subadjunction of log canonical divisors. II, Am. J. Math., Volume 120 (1998), pp. 893-899 | DOI | MR | Zbl
[17.] J. Kollár, et al., Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).
[18.] Birational geometry of algebraic varieties (1998) | DOI | Zbl
[19.] On the uniformity of the Iitaka fibration, Math. Res. Lett., Volume 16 (2009), pp. 663-681 | DOI | MR | Zbl
[20.] 3-fold log flips, With an appendix by Yujiro Kawamata, Russ. Acad. Sci. Izv. Math., Volume 40 (1993), pp. 95-202 | MR | Zbl
[21.] Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006), pp. 551-587 | DOI | MR | Zbl
[22.] On Effective Log Iitaka Fibration for 3-folds and 4-folds, Algebra Number Theory, Volume 3 (2009), pp. 697-710 | DOI | MR | Zbl
[23.] Pluricanonical systems of projective varieties of general type I, Osaka J. Math., Volume 43 (2006), pp. 967-995 | MR | Zbl
[24.] Effective Iitaka fibrations, J. Algebraic Geom., Volume 18 (2009), pp. 711-730 | DOI | MR | Zbl
Cité par Sources :