Riemann-Hilbert correspondence for holonomic D-modules
Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 69-197.

The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of regular holonomic D-modules and that of constructible sheaves.

In this paper, we prove a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and influenced by Tamarkin’s work. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Mochizuki and Kedlaya.

DOI : 10.1007/s10240-015-0076-y
Mots clés : Complex Manifold, Full Subcategory, Tensor Category, Natural Morphism, Distinguished Triangle
D’Agnolo, Andrea 1 ; Kashiwara, Masaki 2

1 Dipartimento di Matematica, Università di Padova via Trieste 63 35121 Padova Italy
2 Research Institute for Mathematical Sciences, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2016__123__69_0,
     author = {D{\textquoteright}Agnolo, Andrea and Kashiwara, Masaki},
     title = {Riemann-Hilbert correspondence for holonomic {D-modules}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {69--197},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     year = {2016},
     doi = {10.1007/s10240-015-0076-y},
     mrnumber = {3502097},
     zbl = {1351.32017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-015-0076-y/}
}
TY  - JOUR
AU  - D’Agnolo, Andrea
AU  - Kashiwara, Masaki
TI  - Riemann-Hilbert correspondence for holonomic D-modules
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 69
EP  - 197
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-015-0076-y/
DO  - 10.1007/s10240-015-0076-y
LA  - en
ID  - PMIHES_2016__123__69_0
ER  - 
%0 Journal Article
%A D’Agnolo, Andrea
%A Kashiwara, Masaki
%T Riemann-Hilbert correspondence for holonomic D-modules
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 69-197
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-015-0076-y/
%R 10.1007/s10240-015-0076-y
%G en
%F PMIHES_2016__123__69_0
D’Agnolo, Andrea; Kashiwara, Masaki. Riemann-Hilbert correspondence for holonomic D-modules. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 69-197. doi : 10.1007/s10240-015-0076-y. http://www.numdam.org/articles/10.1007/s10240-015-0076-y/

[1.] D. G. Babbitt and V. S. Varadarajan, Local moduli for meromorphic differential equations, Astérisque, 169–170 (1989), 217 pp. | Numdam | MR | Zbl

[2.] D’Agnolo, A. On the Laplace transform for tempered holomorphic functions, Int. Math. Res. Not., Volume 16 (2014), pp. 4587-4623 | DOI | MR | Zbl

[3.] D’Agnolo, A.; Kashiwara, M. On a reconstruction theorem for holonomic systems, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 88 (2012), pp. 178-183 | DOI | MR | Zbl

[4.] D’Agnolo, A.; Schapira, P. Leray’s quantization of projective duality, Duke Math. J., Volume 84 (1996), pp. 453-496 | DOI | MR | Zbl

[5.] Deligne, P. Équations Différentielles à Points Singuliers Réguliers (1970) (iii + 133 pp.) | DOI | MR | Zbl

[6.] Deligne, P.; Malgrange, B.; Ramis, J.-P. Singularités Irrégulières, Correspondance et documents (2007) (xii + 188 pp.) | MR | Zbl

[7.] Guillermou, S.; Schapira, P. Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological Mirror Symmetry and Tropical Geometry (2014), pp. 43-85 | DOI | MR | Zbl

[8.] Hille, E. Ordinary Differential Equations in the Complex Domain (1976) (xi + 484 pp.) | MR | Zbl

[9.] Kashiwara, M. The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365 | DOI | MR | Zbl

[10.] Kashiwara, M. D -modules and Microlocal Calculus (2003) (xvi + 254 pp.) | MR | Zbl

[11.] Kashiwara, M.; Schapira, P. Sheaves on Manifolds (1990) (x + 512 pp.) | DOI | MR | Zbl

[12.] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France, 64 (1996), iv + 76 pp. | Numdam | MR | Zbl

[13.] M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque, 271 (2001), 136 pp. | Numdam | MR | Zbl

[14.] Kashiwara, M.; Schapira, P. Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque, Volume 284 (2003), pp. 143-164 | Numdam | MR | Zbl

[15.] Kashiwara, M.; Schapira, P. Categories and Sheaves (2006) (x + 497 pp.) | DOI | Zbl

[16.] Kedlaya, K. S. Good formal structures for flat meromorphic connections, I: surfaces, Duke Math. J., Volume 154 (2010), pp. 343-418 | DOI | MR | Zbl

[17.] Kedlaya, K. S. Good formal structures for flat meromorphic connections, II: excellent schemes, J. Am. Math. Soc., Volume 24 (2011), pp. 183-229 | DOI | MR | Zbl

[18.] Majima, H. Asymptotic Analysis for Integrable Connections with Irregular Singular Points (1984) (xiv + 249 pp.) | DOI | Zbl

[19.] Mochizuki, T. Good formal structure for meromorphic flat connections on smooth projective surfaces, Algebraic Analysis and Around (2009), pp. 223-253 | Zbl

[20.] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 340, (2011), x + 607 pp. | Numdam | Zbl

[21.] Morando, G. An existence theorem for tempered solutions of D-modules on complex curves, Publ. Res. Inst. Math. Sci., Volume 43 (2007), pp. 625-659 | DOI | MR | Zbl

[22.] Morando, G. Preconstructibility of tempered solutions of holonomic D-modules, Int. Math. Res. Not., Volume 4 (2014), pp. 1125-1151 | DOI | MR | Zbl

[23.] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, 263, (2000), viii + 190 pp. | Numdam | Zbl

[24.] Sabbah, C. Introduction to Stokes Structures (2013) (xiv + 249 pp.) | DOI | Zbl

[25.] D. Tamarkin, Microlocal condition for non-displaceability, 2008, 93 pp., | arXiv

[26.] Wasow, W. Asymptotic Expansions for Ordinary Differential Equations (1965) (ix + 362 pp.) | Zbl

Cité par Sources :