We give a canonical synthetic construction of the mirror family to pairs (Y,D) where Y is a smooth projective surface and D is an anti-canonical cycle of rational curves. This mirror family is constructed as the spectrum of an explicit algebra structure on a vector space with canonical basis and multiplication rule defined in terms of counts of rational curves on Y meeting D in a single point. The elements of the canonical basis are called theta functions. Their construction depends crucially on the Gromov-Witten theory of the pair (Y,D).
@article{PMIHES_2015__122__65_0, author = {Gross, Mark and Hacking, Paul and Keel, Sean}, title = {Mirror symmetry for log {Calabi-Yau} surfaces {I}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {65--168}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-015-0073-1}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-015-0073-1/} }
TY - JOUR AU - Gross, Mark AU - Hacking, Paul AU - Keel, Sean TI - Mirror symmetry for log Calabi-Yau surfaces I JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 65 EP - 168 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-015-0073-1/ DO - 10.1007/s10240-015-0073-1 LA - en ID - PMIHES_2015__122__65_0 ER -
%0 Journal Article %A Gross, Mark %A Hacking, Paul %A Keel, Sean %T Mirror symmetry for log Calabi-Yau surfaces I %J Publications Mathématiques de l'IHÉS %D 2015 %P 65-168 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-015-0073-1/ %R 10.1007/s10240-015-0073-1 %G en %F PMIHES_2015__122__65_0
Gross, Mark; Hacking, Paul; Keel, Sean. Mirror symmetry for log Calabi-Yau surfaces I. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 65-168. doi : 10.1007/s10240-015-0073-1. http://www.numdam.org/articles/10.1007/s10240-015-0073-1/
[AC11] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs II, | arXiv
[A02] Complete moduli in the presence of semiabelian group action, Ann. Math. (2), Volume 155 (2002), pp. 611-708 | DOI | MR | Zbl
[A76] Lectures on Deformations of Singularities (1976) | Zbl
[A07] Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., Volume 1 (2007), pp. 51-91 | MR | Zbl
[AMRT75] Smooth Compactification of Locally Symmetric Varieties (1975) | Zbl
[B78] Über formale komplexe Räume, Manuscr. Math., Volume 24 (1978), pp. 253-293 | DOI | MR | Zbl
[C1869] A memoir on cubic surfaces, Philos. Trans. R. Soc. Lond., Volume 159 (1869), pp. 231-326 | DOI | Zbl
[CPS] M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf.
[CO06] Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., Volume 10 (2006), pp. 773-814 | DOI | MR | Zbl
[E95] Commutative Algebra with a View Toward Algebraic Geometry (1995) | Zbl
[FM83] Smoothing cusp singularities of small length, Math. Ann., Volume 263 (1983), pp. 185-212 | DOI | MR | Zbl
[FP84] Smoothings of cusp singularities via triangle singularities, Compos. Math., Volume 53 (1984), pp. 303-324 (With an appendix by H. Pinkham) | Numdam | MR | Zbl
[F75] A. Fujiki, On the blowing down of analytic spaces, Publ. Res. Inst. Math. Sci., 10 (1974/1975), 473–507.
[Giv] Homological geometry. I. Projective hypersurfaces, Sel. Math., Volume 1 (1995), pp. 325-345 | DOI | MR | Zbl
[G09] Mirror symmetry for P2 and tropical geometry, Adv. Math., Volume 224 (2010), pp. 169-245 | DOI | MR | Zbl
[G11] Tropical Geometry and Mirror Symmetry (2011) | Zbl
[GHK12] M. Gross, P. Hacking, and S. Keel, Moduli of surfaces with anti-canonical cycle, Comp. Math., to appear, Preprint, 2012.
[GHK13] M. Gross, P. Hacking, and S. Keel, Birational geometry of cluster algebras, Algebr. Geom., to appear Preprint, 2013.
[GHKK] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, Preprint, 2014.
[GHKII] M. Gross, P. Hacking, and S. Keel, Mirror symmetry for log Calabi-Yau surfaces II, in preparation.
[GHKS] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effective anticanonical class, in preparation.
[K3] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions for K3 surfaces, in preparation.
[GPS09] The tropical vertex, Duke Math. J., Volume 153 (2010), pp. 197-362 | DOI | MR
[GS06] Mirror symmetry via logarithmic degeneration data, I, J. Differ. Geom., Volume 72 (2006), pp. 169-338 | MR | Zbl
[GS07] From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011), pp. 1301-1428 | DOI | MR | Zbl
[GS11] Logarithmic Gromov-Witten invariants, J. Am. Math. Soc., Volume 26 (2013), pp. 451-510 | DOI | MR | Zbl
[GSTheta] M. Gross and B. Siebert, Theta functions and mirror symmetry, | arXiv
[G60] A. Grothendieck, Éléments de géométrie algébrique I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., No. 4.
[G61] Éléments de Géométrie Algébrique III, Étude Cohomologique des Faisceaux Cohérents i (1961)
[H04] Compact moduli of plane curves, Duke Math. J., Volume 124 (2004), pp. 213-257 | DOI | MR | Zbl
[Hi73] Hilbert modular surfaces, Enseign. Math., Volume 19 (1973), pp. 183-281 | MR | Zbl
[H77] Algebraic Geometry (1977) | Zbl
[IP03] Relative Gromov-Witten invariants, Ann. Math., Volume 157 (2003), pp. 45-96 | DOI | MR | Zbl
[KM98] Birational Geometry of Algebraic Varieties (1998) | DOI | Zbl
[KS06] Affine structures and non-Archimedean analytic spaces, The Unity of Mathematics (2006), pp. 321-385 | DOI
[L02] Algebra (2002) | DOI | Zbl
[L73] Taut two-dimensional singularities, Math. Ann., Volume 205 (1973), pp. 131-164 | DOI | MR | Zbl
[Li00] Stable morphisms to singular schemes and relative stable morphisms, J. Differ. Geom., Volume 57 (2000), pp. 509-578
[Li02] A degeneration formula of GW-invariants, J. Differ. Geom., Volume 60 (2002), pp. 199-293 | Zbl
[LT98] Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., Volume 11 (1998), pp. 119-174 | DOI | MR | Zbl
[LR01] Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, I, Invent. Math., Volume 145 (2001), pp. 151-218 | DOI | MR | Zbl
[L81] Rational surfaces with an anticanonical cycle, Ann. Math. (2), Volume 114 (1981), pp. 267-322 | DOI | MR | Zbl
[Ma89] Commutative Ring Theory (1989) | Zbl
[Mum] An analytic construction of degenerating Abelian varieties over complete rings, Compos. Math., Volume 24 (1972), pp. 239-272 | Numdam | MR | Zbl
[N80] Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities, Math. Ann., Volume 252 (1980), pp. 221-235 | DOI | MR | Zbl
[Ob04] Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not., Volume 2004 (2004), pp. 877-912 | DOI | MR | Zbl
[R83] Decomposition of toric morphisms, Arithmetic and Geometry, Vol. II (1983), pp. 395-418 | DOI
[SYZ96] Mirror symmetry is T-duality, Nucl. Phys. B, Volume 479 (1996), pp. 243-259 | DOI | MR | Zbl
[Ty99] A. Tyurin, Geometric quantization and mirror symmetry, | arXiv
[W76] Equisingular deformations of normal surface singularities I, Ann. Math. (2), Volume 104 (1976), pp. 325-356 | DOI | MR | Zbl
Cité par Sources :