The gonality conjecture on syzygies of algebraic curves of large degree
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 301-313.
DOI : 10.1007/s10240-015-0072-2
Mots clés : Vector Bundle, Line Bundle, Global Section, Hilbert Scheme, Free Resolution
Ein, Lawrence 1 ; Lazarsfeld, Robert 2

1 Department of Mathematics, University Illinois at Chicago 851 South Morgan St. 60607 Chicago IL USA
2 Department of Mathematics, Stony Brook University Stony Brook 11794 New York USA
@article{PMIHES_2015__122__301_0,
     author = {Ein, Lawrence and Lazarsfeld, Robert},
     title = {The gonality conjecture on syzygies of algebraic curves of large degree},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {301--313},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-015-0072-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-015-0072-2/}
}
TY  - JOUR
AU  - Ein, Lawrence
AU  - Lazarsfeld, Robert
TI  - The gonality conjecture on syzygies of algebraic curves of large degree
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 301
EP  - 313
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-015-0072-2/
DO  - 10.1007/s10240-015-0072-2
LA  - en
ID  - PMIHES_2015__122__301_0
ER  - 
%0 Journal Article
%A Ein, Lawrence
%A Lazarsfeld, Robert
%T The gonality conjecture on syzygies of algebraic curves of large degree
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 301-313
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-015-0072-2/
%R 10.1007/s10240-015-0072-2
%G en
%F PMIHES_2015__122__301_0
Ein, Lawrence; Lazarsfeld, Robert. The gonality conjecture on syzygies of algebraic curves of large degree. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 301-313. doi : 10.1007/s10240-015-0072-2. http://www.numdam.org/articles/10.1007/s10240-015-0072-2/

[1.] Aprodu, M. Green–Lazarsfeld gonality conjecture for a generic curve of odd genus, Int. Math. Res. Not., Volume 63 (2004), pp. 3409-3416 | DOI | MR

[2.] Aprodu, M.; Nagel, J. Koszul Cohomology and Algebraic Geometry (2010) | Zbl

[3.] Aprodu, M.; Voisin, C. Green–Lazarsfeld’s conjecture for generic curves of large gonality, C. R. Math. Acad. Sci. Paris, Volume 336 (2003), pp. 335-339 | DOI | MR | Zbl

[4.] Arbarello, E.; Cornalba, M.; Griffiths, P.; Harris, J. Geometry of Algebraic Curves, I (1985) | DOI

[5.] Ein, L.; Lazarsfeld, R. Asymptotic syzygies of algebraic varieties, Invent. Math., Volume 190 (2012), pp. 603-646 | DOI | MR | Zbl

[6.] Ellingsrud, G.; Göttsche, L.; Lehn, M. On the cobordism class of the Hilbert scheme of a surface, J. Algeb. Geom., Volume 10 (2001), pp. 81-100 | Zbl

[7.] Green, M. Koszul cohomology and the geometry of projective varieties, J. Differ. Geom., Volume 19 (1984), pp. 125-171 | Zbl

[8.] Green, M. Koszul cohomology and the geometry of projective varieties, II, J. Differ. Geom., Volume 20 (1984), pp. 279-289 | Zbl

[9.] Green, M.; Lazarsfeld, R. On the projective normality of complete linear series on an algebraic curve, Invent. Math., Volume 83 (1985), pp. 73-90 | DOI | MR

[10.] Lazarsfeld, R. Cohomology on symmetric products, syzygies of canonical curves, and a theorem of Kempf, Einstein Metrics and Yangs–Mills Connections (1993), pp. 89-97

[11.] Lazarsfeld, R. Positivity in Algebraic Geometry, I & II (2004) | DOI | Zbl

[12.] J. Rathmann, in preparation.

[13.] Voisin, C. Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc., Volume 4 (2002), pp. 363-404 | DOI | MR | Zbl

[14.] Voisin, C. Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math., Volume 141 (2005), pp. 1163-1190 | DOI | MR | Zbl

[15.] Yang, D. Sn-equivariant sheaves and Koszul cohomology, Res. Math. Sci., Volume 1 (2014), p. 10 | DOI | MR

Cité par Sources :