Constructing group actions on quasi-trees and applications to mapping class groups
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64.

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.

DOI : 10.1007/s10240-014-0067-4
Mots-clés : Asymptotic Dimension, Cayley Graph, Mapping Class Group, Hyperbolic Group, Cayley Tree
Bestvina, Mladen 1 ; Bromberg, Ken 1 ; Fujiwara, Koji 2

1 Department of Mathematics, University of Utah 84112 Salt Lake City UT USA
2 Department of Mathematics, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2015__122__1_0,
     author = {Bestvina, Mladen and Bromberg, Ken and Fujiwara, Koji},
     title = {Constructing group actions on quasi-trees and applications to mapping class groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--64},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-014-0067-4},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-014-0067-4/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Bromberg, Ken
AU  - Fujiwara, Koji
TI  - Constructing group actions on quasi-trees and applications to mapping class groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 1
EP  - 64
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-014-0067-4/
DO  - 10.1007/s10240-014-0067-4
LA  - en
ID  - PMIHES_2015__122__1_0
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Bromberg, Ken
%A Fujiwara, Koji
%T Constructing group actions on quasi-trees and applications to mapping class groups
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 1-64
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-014-0067-4/
%R 10.1007/s10240-014-0067-4
%G en
%F PMIHES_2015__122__1_0
Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji. Constructing group actions on quasi-trees and applications to mapping class groups. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64. doi : 10.1007/s10240-014-0067-4. http://www.numdam.org/articles/10.1007/s10240-014-0067-4/

[AK11] Algom-Kfir, Y. Strongly contracting geodesics in outer space, Geom. Topol., Volume 15 (2011), pp. 2181-2234 | DOI | MR | Zbl

[AKB12] Algom-Kfir, Y.; Bestvina, M. Asymmetry of outer space, Geom. Dedic., Volume 156 (2012), pp. 81-92 | DOI | MR | Zbl

[BaBr] Ballmann, W.; Brin, M. Orbihedra of nonpositive curvature, Publ. Math. IHÉS, Volume 82 (1995), pp. 169-209 (1996) | DOI | Numdam | MR | Zbl

[Beh06] Behrstock, J. A. Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol., Volume 10 (2006), pp. 1523-1578 | DOI | MR | Zbl

[BC12] Behrstock, J.; Charney, R. Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012), pp. 339-356 | DOI | MR | Zbl

[BDS11a] Behrstock, J.; Druţu, C.; Sapir, M. Addendum: median structures on asymptotic cones and homomorphisms into mapping class groups [mr2783135], Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 555-562 | DOI | MR | Zbl

[BDS11b] Behrstock, J.; Druţu, C.; Sapir, M. Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 503-554 | DOI | MR | Zbl

[BM08] Behrstock, J. A.; Minsky, Y. N. Dimension and rank for mapping class groups, Ann. Math. (2), Volume 167 (2008), pp. 1055-1077 | DOI | MR | Zbl

[BD06] Bell, G. C.; Dranishnikov, A. N. A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Am. Math. Soc., Volume 358 (2006), pp. 4749-4764 (electronic) | DOI | MR | Zbl

[BD08] Bell, G.; Dranishnikov, A. Asymptotic dimension, Topol. Appl., Volume 155 (2008), pp. 1265-1296 | DOI | MR | Zbl

[BelF08] Bell, G. C.; Fujiwara, K. The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2), Volume 77 (2008), pp. 33-50 | DOI | MR | Zbl

[Bes11] Bestvina, M. A Bers-like proof of the existence of train tracks for free group automorphisms, Fundam. Math., Volume 214 (2011), pp. 1-12 | DOI | MR | Zbl

[BB] M. Bestvina and K. Bromberg, On the asymptotic dimension of a curve complex, preprint (2014).

[BBFa] M. Bestvina, K. Bromberg, and K. Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, | arXiv

[BBFb] M. Bestvina, K. Bromberg, and K. Fujiwara, Projection complexes, acylindrically hyperbolic groups and bounded cohomology, preprint (2014).

[BBFc] M. Bestvina, K. Bromberg, and K. Fujiwara, Stable commutator length on mapping class groups, | arXiv

[BFe14a] Bestvina, M.; Feighn, M. Hyperbolicity of the complex of free factors, Adv. Math., Volume 256 (2014), pp. 104-155 | DOI | MR | Zbl

[BFe14b] Bestvina, M.; Feighn, M. Subfactor projections, J. Topol., Volume 7 (2014), pp. 771-804 | DOI | MR | Zbl

[BF02] Bestvina, M.; Fujiwara, K. Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 (electronic) | DOI | MR | Zbl

[BF09] Bestvina, M.; Fujiwara, K. A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., Volume 19 (2009), pp. 11-40 | DOI | MR | Zbl

[Bow08] Bowditch, B. H. Tight geodesics in the curve complex, Invent. Math., Volume 171 (2008), pp. 281-300 | DOI | MR | Zbl

[Bri10] Bridson, M. R. Semisimple actions of mapping class groups on CAT(0) spaces, Geometry of Riemann Surfaces (2010), pp. 1-14 | DOI

[BV06] Bridson, M. R.; Vogtmann, K. Automorphism groups of free groups, surface groups and free Abelian groups, Problems on Mapping Class Groups and Related Topics (2006), pp. 301-316 | DOI

[Bro02] Brock, J. F. Pants decompositions and the Weil-Petersson metric, Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001) (2002), pp. 27-40 | DOI

[Bro03] Brock, J. F. The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003), pp. 495-535 (electronic) | DOI | MR | Zbl

[BuM00] Burger, M.; Mozes, S. Lattices in product of trees, Publ. Math. IHÉS, Volume 92 (2000), pp. 151-194 (2001) | DOI | MR | Zbl

[CF10] Caprace, P.-E.; Fujiwara, K. Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., Volume 19 (2010), pp. 1296-1319 | DOI | MR | Zbl

[CS11] Caprace, P.-E.; Sageev, M. Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011), pp. 851-891 | DOI | MR | Zbl

[CB88] Casson, A. J.; Bleiler, S. A. Automorphisms of Surfaces After Nielsen and Thurston (1988) | DOI | Zbl

[CV86] Culler, M.; Vogtmann, K. Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 | DOI | MR | Zbl

[DGO] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, | arXiv

[dlHV89] de la Harpe, P.; Valette, A. La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque, Volume 175 (1989), p. 158 (With an appendix by M. Burger)

[Del] T. Delzant, A finiteness property on monodromies of holomorphic families, | arXiv

[DrS] Druţu, C.; Sapir, M. Tree-graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005), pp. 959-1058 (With an appendix by Denis Osin and Sapir) | DOI | MR | Zbl

[EF97] Epstein, D. B. A.; Fujiwara, K. The second bounded cohomology of word-hyperbolic groups, Topology, Volume 36 (1997), pp. 1275-1289 | DOI | MR | Zbl

[EMR] A. Eskin, H. Masur, and R. Kasra, Large scale rank of Teichmüller space, | arXiv

[FLM01] Farb, B.; Lubotzky, A.; Minsky, Y. Rank-1 phenomena for mapping class groups, Duke Math. J., Volume 106 (2001), pp. 581-597 | DOI | MR | Zbl

[FM12] Farb, B.; Margalit, D. A Primer on Mapping Class Groups (2012)

[FPS] R. Frigerio, M. B. Pozzetti, and A. Sisto, Extending higher dimensional quasi-cocycles, | arXiv

[Gro87] Gromov, M. Hyperbolic groups, Essays in Group Theory (1987), pp. 75-263 | DOI

[Gro93] Gromov, M. Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991) (1993), pp. 1-295

[Ham09] Hamenstädt, U. Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., Volume 175 (2009), pp. 545-609 | DOI | MR | Zbl

[HM13] Handel, M.; Mosher, L. The free splitting complex of a free group, I: hyperbolicity, Geom. Topol., Volume 17 (2013), pp. 1581-1672 | DOI | MR | Zbl

[Hum] D. Hume, Embedding mapping class groups into finite products of trees, | arXiv

[Ker80] Kerckhoff, S. P. The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980), pp. 23-41 | DOI | MR | Zbl

[Kid08] Kida, Y. The Mapping Class Group from the Viewpoint of Measure Equivalence Theory (2008) (916):viii+190

[MS13] Mackay, J. M.; Sisto, A. Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol., Volume 13 (2013), pp. 2261-2282 | DOI | MR | Zbl

[Man05] Manning, J. F. Geometry of pseudocharacters, Geom. Topol., Volume 9 (2005), pp. 1147-1185 (electronic) | DOI | MR | Zbl

[Man06] Manning, J. F. Quasi-actions on trees and property (QFA), J. Lond. Math. Soc. (2), Volume 73 (2006), pp. 84-108 (With an appendix by N. Monod and B. Rémy) | DOI | MR | Zbl

[Mang10] Mangahas, J. Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal., Volume 19 (2010), pp. 1468-1480 | DOI | MR | Zbl

[Mang13] Mangahas, J. A recipe for short-word pseudo-Anosovs, Am. J. Math., Volume 135 (2013), pp. 1087-1116 | DOI | MR | Zbl

[MP12] Martínez-Pérez, Á. Bushy pseudocharacters and group actions on quasitrees, Algebr. Geom. Topol., Volume 12 (2012), pp. 1725-1743 | DOI | MR | Zbl

[MM99] Masur, H. A.; Minsky, Y. N. Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999), pp. 103-149 | DOI | MR | Zbl

[MM00] Masur, H. A.; Minsky, Y. N. Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., Volume 10 (2000), pp. 902-974 | DOI | MR | Zbl

[Min96a] Minsky, Y. N. Extremal length estimates and product regions in Teichmüller space, Duke Math. J., Volume 83 (1996), pp. 249-286 | DOI | MR | Zbl

[Min96b] Minsky, Y. N. Quasi-projections in Teichmüller space, J. Reine Angew. Math., Volume 473 (1996), pp. 121-136 | MR | Zbl

[Mon06] Monod, N. An invitation to bounded cohomology, International Congress of Mathematicians (2006), pp. 1183-1211

[MSW03] Mosher, L.; Sageev, M.; Whyte, K. Quasi-actions on trees. I. Bounded valence, Ann. Math. (2), Volume 158 (2003), pp. 115-164 | DOI | MR | Zbl

[Osi] D. Osin, Acylindrically hyperbolic groups, | arXiv

[Roe03] Roe, J. Lectures on Coarse Geometry (2003) | Zbl

[Sis] A. Sisto, On metric relative hyperbolicity, | arXiv

[Vog02] Vogtmann, K. Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000) (2002), pp. 1-31

[Vog06] Vogtmann, K. The cohomology of automorphism groups of free groups, International Congress of Mathematicians (2006), pp. 1101-1117

[Web] R. C. H. Webb, Combinatorics of tight geodesics and stable lengths, | arXiv

[Yu98] Yu, G. The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), Volume 147 (1998), pp. 325-355 | DOI | Zbl

Cité par Sources :