Quadratic differentials as stability conditions
Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 155-278.

We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to the stable objects of the corresponding stability condition.

DOI : 10.1007/s10240-014-0066-5
Mots clés : Riemann Surface, Marked Point, Boundary Component, Quadratic Differential, Simple Object
Bridgeland, Tom 1 ; Smith, Ivan 2

1 School of Mathematics and Statistics, University of Sheffield Hicks Building S3 7RH Hounsfield Road England UK
2 Centre for Mathematical Sciences CB3 0WB Cambridge England UK
@article{PMIHES_2015__121__155_0,
     author = {Bridgeland, Tom and Smith, Ivan},
     title = {Quadratic differentials as stability conditions},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {155--278},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     year = {2015},
     doi = {10.1007/s10240-014-0066-5},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-014-0066-5/}
}
TY  - JOUR
AU  - Bridgeland, Tom
AU  - Smith, Ivan
TI  - Quadratic differentials as stability conditions
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 155
EP  - 278
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-014-0066-5/
DO  - 10.1007/s10240-014-0066-5
LA  - en
ID  - PMIHES_2015__121__155_0
ER  - 
%0 Journal Article
%A Bridgeland, Tom
%A Smith, Ivan
%T Quadratic differentials as stability conditions
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 155-278
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-014-0066-5/
%R 10.1007/s10240-014-0066-5
%G en
%F PMIHES_2015__121__155_0
Bridgeland, Tom; Smith, Ivan. Quadratic differentials as stability conditions. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 155-278. doi : 10.1007/s10240-014-0066-5. http://www.numdam.org/articles/10.1007/s10240-014-0066-5/

[1.] Bayer, A.; Macri, E. The space of stability conditions on the local projective plane, Duke Math. J., Volume 160 (2011), pp. 263-322 | DOI | MR | Zbl

[2.] Bridgeland, T. Stability conditions on triangulated categories, Ann. Math., Volume 166 (2007), pp. 317-345 | DOI | MR | Zbl

[3.] Bridgeland, T. Spaces of stability conditions, Algebraic Geometry—Seattle 2005. Part I, 1–21. Proc. Sympos. Pure Math. 80, Part 1 (2009)

[4.] Bridgeland, T. Stability conditions on K3 surfaces, Duke Math. J., Volume 141 (2008), pp. 241-291 Duke Math. J. (2009) | DOI | MR | Zbl

[5.] Bridgeland, T. Stability conditions on a non-compact Calabi-Yau threefold, Commun. Math. Phys., Volume 266 (2006), pp. 715-733 | DOI | MR | Zbl

[6.] Cerulli Irelli, G.; Keller, B.; Labardini-Fragoso, D.; Plamondon, P.-G. Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Volume 149 (2013), pp. 1753-1764 | DOI | MR | Zbl

[7.] Cerulli Irelli, G.; Labardini Fragoso, D. Quivers with potential associated to triangulated surfaces, Part III: Tagged triangulations and cluster monomials, Compos. Math., Volume 148 (2012), pp. 1833-1866 | DOI | MR | Zbl

[8.] Derksen, H.; Weyman, J.; Zelevinsky, A. Quivers with potential and their representations, I: Mutations, Sel. Math. New Ser., Volume 14 (2008), pp. 59-119 | DOI | MR | Zbl

[9.] Fletcher, A.; Markovich, V. Quasiconformal Maps and Teichmüller Theory (2007) (viii+189 pp.) | Zbl

[10.] Fomin, S.; Shapiro, M.; Thurston, D. Cluster algebras and triangulated surfaces, Part I: Cluster complexes, Acta Math., Volume 201 (2008), pp. 83-146 | DOI | MR | Zbl

[11.] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces, Part II: Lambda lengths. Preprint. Available at | arXiv

[12.] C. Geiss, D. Labardini-Fragoso and J. Schröer, The representation type of Jacobian algebras. Preprint. Available at | arXiv

[13.] Gaiotto, D.; Moore, G.; Neitzke, A. Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., Volume 299 (2010), pp. 163-224 | DOI | MR | Zbl

[14.] Gaiotto, D.; Moore, G.; Neitzke, A. Wall-crossing, Hitchin systems and the WKB approximation, Adv. Math., Volume 234 (2013), pp. 239-403 | DOI | MR | Zbl

[15.] V. Ginzburg, Calabi-Yau algebras. Preprint. Available at | arXiv

[16.] W. Gu, Graphs with non-unique decomposition and their associated surfaces. Preprint. Available at | arXiv

[17.] D. Happel, I. Reiten and S. Smalo, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120 (1996).

[18.] Hartshorne, R. Algebraic Geometry (1977) (xvi+496 pp.) | Zbl

[19.] Hitchin, N. The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., Volume 55 (1987), pp. 59-126 | DOI | MR | Zbl

[20.] Jones, G. A.; Singerman, D. Complex Functions. An Algebraic and Geometric Viewpoint (1987) (xiv+342 pp.) | DOI | Zbl

[21.] Keller, B. On Differential Graded Categories (2006), pp. 151-190

[22.] Keller, B. On cluster theory and quantum dilogarithm identities, Representations of Algebras and Related Topics (2011), pp. 85-116 | DOI

[23.] Keller, B.; Yang, D. Derived equivalences from mutations of quivers with potential, Adv. Math., Volume 226 (2011), pp. 2118-2168 | DOI | MR | Zbl

[24.] King, A. D. Moduli of representations of finite-dimensional algebras, Q. J. Math., Volume 45 (1994), pp. 515-530 | DOI | Zbl

[25.] A. D. King and Y. Qiu, Exchange graphs of acyclic Calabi-Yau categories. Preprint. Available at | arXiv

[26.] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. Preprint. Available at | arXiv

[27.] Labardini-Fragoso, D. Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc., Volume 98 (2009), pp. 797-839 | DOI | MR | Zbl

[28.] D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part II: Arc Representations. Preprint. Available at | arXiv

[29.] D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part IV: Removing boundary assumptions. Preprint. Available at | arXiv

[30.] Masur, H. Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-314 | DOI | MR | Zbl

[31.] Masur, H.; Zorich, A. Multiple saddle trajectories on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 | DOI | MR | Zbl

[32.] Papadopoulos, A. Metric Spaces, Convexity and Nonpositive Curvature (2005) | Zbl

[33.] Seidel, P.; Thomas, R. P. Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108 | DOI | MR | Zbl

[34.] Smale, S. Diffeomorphisms of the 2-sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | MR | Zbl

[35.] I. Smith, Quiver algebras as Fukaya categories. Preprint. Available at | arXiv

[36.] Strebel, K. Quadratic Differentials (1984) | DOI | Zbl

[37.] T. Sutherland, The modular curve as the space of stability conditions of a CY3 algebra. Preprint. Available at | arXiv

[38.] T. Sutherland, Stability conditions and Seiberg-Witten curves, Ph.D. Thesis, University of Sheffield, 2014.

[39.] Veech, W. Moduli spaces of quadratic differentials, J. Anal. Math., Volume 55 (1990), pp. 117-171 | DOI | MR | Zbl

[40.] Woolf, J. Stability conditions, torsion theories and tilting, J. Lond. Math. Soc., Volume 82 (2010), pp. 663-682 | DOI | MR | Zbl

[41.] Zariski, O. On the problem of existence of algebraic functions of two variables possessing a given branch curve, Am. J. Math., Volume 51 (1929), pp. 305-328 | DOI | MR | Zbl

Cité par Sources :