We prove that, for general cost functions on Rn, or for the cost d2/2 on a Riemannian manifold, optimal transport maps between smooth densities are always smooth outside a closed singular set of measure zero.
@article{PMIHES_2015__121__81_0, author = {De Philippis, Guido and Figalli, Alessio}, title = {Partial regularity for optimal transport maps}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {81--112}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {121}, year = {2015}, doi = {10.1007/s10240-014-0064-7}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-014-0064-7/} }
TY - JOUR AU - De Philippis, Guido AU - Figalli, Alessio TI - Partial regularity for optimal transport maps JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 81 EP - 112 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-014-0064-7/ DO - 10.1007/s10240-014-0064-7 LA - en ID - PMIHES_2015__121__81_0 ER -
%0 Journal Article %A De Philippis, Guido %A Figalli, Alessio %T Partial regularity for optimal transport maps %J Publications Mathématiques de l'IHÉS %D 2015 %P 81-112 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-014-0064-7/ %R 10.1007/s10240-014-0064-7 %G en %F PMIHES_2015__121__81_0
De Philippis, Guido; Figalli, Alessio. Partial regularity for optimal transport maps. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 81-112. doi : 10.1007/s10240-014-0064-7. http://www.numdam.org/articles/10.1007/s10240-014-0064-7/
[1.] Gradient Flows in Metric Spaces and in the Space of Probability Measures (2008) | Zbl
[2.] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375-417 | DOI | MR | Zbl
[3.] A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. Math. (2), Volume 131 (1990), pp. 129-134 | DOI | MR | Zbl
[4.] Some regularity properties of solutions of Monge Ampère equation, Commun. Pure Appl. Math., Volume 44 (1991), pp. 965-969 | DOI | MR | Zbl
[5.] The regularity of mappings with a convex potential, J. Am. Math. Soc., Volume 5 (1992), pp. 99-104 | DOI | MR | Zbl
[6.] Interior W2,p estimates for solutions of the Monge-Ampère equation, Ann. Math. (2), Volume 131 (1990), pp. 135-150 | DOI | MR | Zbl
[7.] L. A. Caffarelli, M. M. Gonzáles and T. Nguyen, A perturbation argument for a Monge-Ampère type equation arising in optimal transportation. Preprint (2011).
[8.] A Liouville theorem for solutions of the Monge-Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004), pp. 97-120 | Numdam | MR | Zbl
[9.] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001), pp. 219-257 | DOI | MR | Zbl
[10.] Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds, J. Reine Angew. Math., Volume 646 (2010), pp. 65-115 | MR | Zbl
[11.] Positively curved Riemannian locally symmetric spaces are positively squared distance curved, Can. J. Math., Volume 65 (2013), pp. 757-767 | DOI | Zbl
[12.] Measure Theory and Fine Properties of Functions (1992) | Zbl
[13.] Optimal transportation on non-compact manifolds, Isr. J. Math., Volume 175 (2010), pp. 1-59 | DOI | MR | Zbl
[14.] Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., Volume 39 (2007), pp. 126-137 | DOI | MR | Zbl
[15.] A. Figalli, Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. (English summary) Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. Astérisque No. 332 (2010), Exp. No. 1009, ix, 341–368.
[16.] Regularity properties of optimal maps between nonconvex domains in the plane, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 465-479 | DOI | MR | Zbl
[17.] Local semiconvexity of Kantorovich potentials on non-compact manifolds, ESAIM Control Optim. Calc. Var., Volume 17 (2011), pp. 648-653 | DOI | Numdam | MR | Zbl
[18.] Partial regularity of Brenier solutions of the Monge-Ampère equation, Discrete Contin. Dyn. Syst., Volume 28 (2010), pp. 559-565 | DOI | MR | Zbl
[19.] Hölder continuity and injectivity of optimal maps, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 747-795 | DOI | MR | Zbl
[20.] Regularity of optimal transport maps on multiple products of spheres, J. Eur. Math. Soc. (JEMS), Volume 5 (2013), pp. 1131-1166 | DOI | MR
[21.] C1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two, Calc. Var. Partial Differ. Equ., Volume 35 (2009), pp. 537-550 | DOI | MR | Zbl
[22.] Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S2, Commun. Pure Appl. Math., Volume 62 (2009), pp. 1670-1706 | DOI | MR | Zbl
[23.] On the Ma-Trudinger-Wang curvature on surfaces, Calc. Var. Partial Differ. Equ., Volume 39 (2010), pp. 307-332 | DOI | MR | Zbl
[24.] Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Math. J. (2), Volume 63 (2011), pp. 855-876 | DOI | MR | Zbl
[25.] Nearly round spheres look convex, Am. J. Math., Volume 134 (2012), pp. 109-139 | DOI | MR | Zbl
[26.] The Monge-Ampére Equation (2001) | DOI | Zbl
[27.] Continuity estimates for the Monge-Ampère equation, SIAM J. Math. Anal., Volume 39 (2007), pp. 608-626 | DOI | MR | Zbl
[28.] Y.-H. Kim, Counterexamples to continuity of optimal transport maps on positively curved Riemannian manifolds, Int. Math. Res. Not. IMRN 2008, Art. ID rnn120, 15 pp.
[29.] Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. Reine Angew. Math., Volume 664 (2012), pp. 1-27 | DOI | MR | Zbl
[30.] Interior C2,α regularity for potential functions in optimal transportation, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 165-184 | DOI | MR | Zbl
[31.] On the regularity of solutions of optimal transportation problems, Acta Math., Volume 202 (2009), pp. 241-283 | DOI | MR | Zbl
[32.] Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 269-289 | DOI | MR | Zbl
[33.] Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., Volume 177 (2005), pp. 151-183 | DOI | MR | Zbl
[34.] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589-608 | DOI | MR | Zbl
[35.] On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 8 (2009), pp. 143-174 | Numdam | MR | Zbl
[36.] On strict convexity and continuous differentiability of potential functions in optimal transportation, Arch. Ration. Mech. Anal., Volume 192 (2009), pp. 403-418 | DOI | MR | Zbl
Cité par Sources :