An n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated. We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.
@article{PMIHES_2015__121__57_0, author = {Avil\'es, Antonio and Todorcevic, Stevo}, title = {Finite basis for analytic multiple gaps}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {57--79}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {121}, year = {2015}, doi = {10.1007/s10240-014-0063-8}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-014-0063-8/} }
TY - JOUR AU - Avilés, Antonio AU - Todorcevic, Stevo TI - Finite basis for analytic multiple gaps JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 57 EP - 79 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-014-0063-8/ DO - 10.1007/s10240-014-0063-8 LA - en ID - PMIHES_2015__121__57_0 ER -
%0 Journal Article %A Avilés, Antonio %A Todorcevic, Stevo %T Finite basis for analytic multiple gaps %J Publications Mathématiques de l'IHÉS %D 2015 %P 57-79 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-014-0063-8/ %R 10.1007/s10240-014-0063-8 %G en %F PMIHES_2015__121__57_0
Avilés, Antonio; Todorcevic, Stevo. Finite basis for analytic multiple gaps. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 57-79. doi : 10.1007/s10240-014-0063-8. http://www.numdam.org/articles/10.1007/s10240-014-0063-8/
[1.] Unconditional families in Banach spaces, Math. Ann., Volume 341 (2008), pp. 15-38 | DOI | MR | Zbl
[2.] Multiple gaps, Fundam. Math., Volume 213 (2011), pp. 15-42 | DOI | Zbl
[3.] Finite basis for analytic strong n-gaps, Combinatorica, Volume 33 (2013), pp. 375-393 | DOI | MR | Zbl
[4.] A dual form of Ramsey’s theorem, Adv. Math., Volume 53 (1984), pp. 265-290 | DOI | MR | Zbl
[5.] A discontinuous homomorphism from C(X), Am. J. Math., Volume 101 (1979), pp. 647-734 | DOI | MR | Zbl
[6.] An Introduction to Independence for Analysts (1987) (xiv+241 pp.) | DOI | Zbl
[7.] Operators whose dual has non-separable range, J. Funct. Anal., Volume 260 (2011), pp. 1285-1303 | DOI | MR | Zbl
[8.] On pair of definable orthogonal families, Ill. J. Math., Volume 52 (2008), pp. 181-201 | MR | Zbl
[9.] Eine neue Theorie der Convergenz und Divergenz von Reihen mitpositiven Gliedern, J. Reine Angew. Math., Volume 76 (1873), pp. 61-91 | DOI | Zbl
[10.] Injection de semi-groupes divisibles dans des algèbres de convolution et construction d’homomorphismes discontinus de C(K), Proc. Lond. Math. Soc. (3), Volume 36 (1978), pp. 59-85 | DOI | MR | Zbl
[11.] Lipschitz functions on classical spaces, Eur. J. Comb., Volume 13 (1992), pp. 141-151 | DOI | MR | Zbl
[12.] Sur les caractères de convergence des séries à termes positifs et sur les fonctions indéfiniment croissantes, Acta Math., Volume 18 (1894), pp. 319-336 | DOI | MR | Zbl
[13.] Regularity and positional games, Trans. Am. Math. Soc., Volume 106 (1963), pp. 222-229 | DOI | MR | Zbl
[14.] Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl., Volume 31 (1909), pp. 296-334
[15.] Summen von ℵ1 Mengen, Fundam. Math., Volume 26 (1936), pp. 241-255
[16.] Normed algebras, Duke Math. J., Volume 16 (1949), pp. 399-418 | DOI | MR | Zbl
[17.] Classical Descriptive Set Theory (1995) | Zbl
[18.] A partition theorem for the infinite subtrees of a tree, Trans. Am. Math. Soc., Volume 263 (1981), pp. 137-148 | DOI | MR | Zbl
[19.] Analytic gaps, Fundam. Math., Volume 150 (1996), pp. 55-66 | MR | Zbl
[20.] Compact subsets of the first Baire class, J. Am. Math. Soc., Volume 12 (1999), pp. 1179-1212 | DOI | MR | Zbl
[21.] Introduction to Ramsey Spaces (2010) | DOI
[22.] On the consistency strength of projective uniformization, Proceedings of Herbrand Symposium (1982), pp. 365-384 | DOI
Cité par Sources :