We prove the - and -theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for
@article{PMIHES_2014__119__97_0, author = {Bartels, Arthur and L\"uck, Wolfgang and Reich, Holger and R\"uping, Henrik}, title = {$K$- and \protect\emph{$L$}-theory of group rings over $GL_n ( \mathbf{Z} )$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {97--125}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {119}, year = {2014}, doi = {10.1007/s10240-013-0055-0}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-013-0055-0/} }
TY - JOUR AU - Bartels, Arthur AU - Lück, Wolfgang AU - Reich, Holger AU - Rüping, Henrik TI - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$ JO - Publications Mathématiques de l'IHÉS PY - 2014 SP - 97 EP - 125 VL - 119 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-013-0055-0/ DO - 10.1007/s10240-013-0055-0 LA - en ID - PMIHES_2014__119__97_0 ER -
%0 Journal Article %A Bartels, Arthur %A Lück, Wolfgang %A Reich, Holger %A Rüping, Henrik %T $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$ %J Publications Mathématiques de l'IHÉS %D 2014 %P 97-125 %V 119 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-013-0055-0/ %R 10.1007/s10240-013-0055-0 %G en %F PMIHES_2014__119__97_0
Bartels, Arthur; Lück, Wolfgang; Reich, Holger; Rüping, Henrik. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125. doi : 10.1007/s10240-013-0055-0. http://www.numdam.org/articles/10.1007/s10240-013-0055-0/
[1.] A. Bartels, T. Farrell, and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. | arXiv
[2.] On twisted group rings with twisted involutions, their module categories and L-theory, Cohomology of Groups and Algebraic K-Theory (2009), pp. 1-55 | MR | Zbl
[3.] Geodesic flow for CAT(0)-groups, Geom. Topol., Volume 16 (2012), pp. 1345-1391 | DOI | MR | Zbl
[4.] The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. Math. (2), Volume 175 (2012), pp. 631-689 | DOI | MR | Zbl
[5.] The K-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008), pp. 29-70 | DOI | MR | Zbl
[6.] On the Farrell-Jones conjecture and its applications, Topology, Volume 1 (2008), pp. 57-86 | DOI | MR | Zbl
[7.] Coefficients for the Farrell-Jones conjecture, Adv. Math., Volume 209 (2007), pp. 337-362 | DOI | MR | Zbl
[8.] Metric Spaces of Non-Positive Curvature (1999) | MR | Zbl
[9.] Cohomology of Groups (1982) | MR | Zbl
[10.] Algebraic K-theory over the infinite dihedral group: a controlled topology approach, Topology, Volume 4 (2011), pp. 505-528 | DOI | MR | Zbl
[11.] Permutation Groups (1996) | MR | Zbl
[12.] Geometry of Nonpositively Curved Manifolds (1996) | MR | Zbl
[13.] Isomorphism conjectures in algebraic K-theory, J. Am. Math. Soc., Volume 6 (1993), pp. 249-297 | MR | Zbl
[14.] Rigidity for aspherical manifolds with π1⊂GLm(R), Asian J. Math., Volume 2 (1998), pp. 215-262 | MR | Zbl
[15.] The Whitehead groups of braid groups vanish, Int. Math. Res. Not., Volume 10 (2000), pp. 515-526 | DOI | MR | Zbl
[16.] Reduction theory using semistability, Comment. Math. Helv., Volume 59 (1984), pp. 600-634 | DOI | MR | Zbl
[17.] Principles of Algebraic Geometry (1978) | MR | Zbl
[18.] Differential Geometry, Lie Groups, and Symmetric Spaces (1978) | MR | Zbl
[19.] P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, | arXiv
[20.] Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (2005), pp. 269-322 | MR | Zbl
[21.] The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, Handbook of K-Theory, vols. 1, 2 (2005), pp. 703-842 | MR | Zbl
[22.] Algebraic Number Theory (1999) | MR | Zbl
[23.] The Farrell-Jones isomorphism conjecture for 3-manifold groups, K-Theory, Volume 1 (2008), pp. 49-82 | MR | Zbl
[24.] The K-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Am. Math. Soc., Volume 140 (2012), pp. 779-793 | DOI | MR | Zbl
Cité par Sources :