Given a positive real Hermitian holomorphic line bundle L over a smooth real projective manifold X, the space of real holomorphic sections of the bundle L d inherits for every d∈ℕ∗ a L 2-scalar product which induces a Gaussian measure. When X is a curve or a surface, we estimate the volume of the cone of real sections whose vanishing locus contains many real components. In particular, the volume of the cone of maximal real sections decreases exponentially as d grows to infinity.
@article{PMIHES_2011__113__69_0, author = {Gayet, Damien and Welschinger, Jean-Yves}, title = {Exponential rarefaction of real curves with many components}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {69--96}, publisher = {Springer-Verlag}, volume = {113}, year = {2011}, doi = {10.1007/s10240-011-0033-3}, mrnumber = {2805598}, zbl = {1227.32028}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-011-0033-3/} }
TY - JOUR AU - Gayet, Damien AU - Welschinger, Jean-Yves TI - Exponential rarefaction of real curves with many components JO - Publications Mathématiques de l'IHÉS PY - 2011 SP - 69 EP - 96 VL - 113 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-011-0033-3/ DO - 10.1007/s10240-011-0033-3 LA - en ID - PMIHES_2011__113__69_0 ER -
%0 Journal Article %A Gayet, Damien %A Welschinger, Jean-Yves %T Exponential rarefaction of real curves with many components %J Publications Mathématiques de l'IHÉS %D 2011 %P 69-96 %V 113 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-011-0033-3/ %R 10.1007/s10240-011-0033-3 %G en %F PMIHES_2011__113__69_0
Gayet, Damien; Welschinger, Jean-Yves. Exponential rarefaction of real curves with many components. Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 69-96. doi : 10.1007/s10240-011-0033-3. http://www.numdam.org/articles/10.1007/s10240-011-0033-3/
[1.] Polynomial diffeomorphisms of C 2. IV. The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993), pp. 77-125 | DOI | MR | Zbl
[2.] A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008), pp. 1871-2487 | DOI | MR | Zbl
[3.] Convergence de la métrique de Fubini-Study d’un fibré linéaire positif, Ann. Inst. Fourier, Volume 40 (1990), pp. 117-130 | Numdam | MR | Zbl
[4.] The Bergman Kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables, Birkhäuser, Boston, 1999 (G. Komatsu and M. Kuranishi, eds) | MR | Zbl
[5.] Sur la laminarité de certains courants, Ann. Sci. Ecole Norm. Super., Volume 37 (2004), pp. 304-311 | Numdam | MR | Zbl
[6.] Courants positifs extrêmaux et conjecture de Hodge, Invent. Math., Volume 69 (1982), pp. 347-374 | DOI | MR | Zbl
[7.] Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., Volume 81 (2006), pp. 221-258 | DOI | MR | Zbl
[8.] Symplectic submanifolds and almost-complex geometry, J. Differ. Geom., Volume 44 (1996), pp. 666-705 | MR | Zbl
[9.] Laminar currents in ${\Bbb{P}}^{2}$ , Math. Ann., Volume 325 (2003), pp. 745-765 | DOI | MR | Zbl
[10.] How many zeros of a random polynomial are real?, Bull. Am. Math. Soc., Volume 32 (1995), pp. 1-37 | DOI | MR | Zbl
[11.] Symplectic real hypersurfaces and Lefschetz pencils, J. Symplectic Geom., Volume 6 (2008), pp. 247-266 | MR | Zbl
[12.] Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann., Volume 10 (1876), pp. 189-198 | DOI | JFM | MR
[13.] The Bergman kernel function. Differentiability at the boundary, Math. Ann., Volume 195 (1972), pp. 149-158 | DOI | MR | Zbl
[14.] Ueber den Verlauf der Abel’schen Integrale bei den Curven vierten Grades, Math. Ann., Volume 10 (1876), pp. 365-397 | DOI | JFM | MR
[15.] Density of complex zeros of a system of real random polynomials, J. Stat. Phys., Volume 136 (2009), pp. 807-833 | DOI | MR | Zbl
[16.] On the number of nodal domains of random spherical harmonics, Am. J. Math., Volume 131 (2009), pp. 1337-1357 | DOI | MR | Zbl
[17.] Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999), pp. 661-683 | DOI | MR | Zbl
[18.] Number variance of random zeros, Geom. Funct. Anal., Volume 18 (2008), pp. 1422-1475 | DOI | MR | Zbl
[19.] Overcrowding and hole probabilities for random zeros on complex manifolds, Indiana Univ. Math. J., Volume 57 (2008), pp. 1977-1997 | DOI | MR | Zbl
[20.] Random complex zeroes. I. Asymptotic normality, Isr. J. Math., Volume 144 (2004), pp. 125-149 | DOI | MR | Zbl
[21.] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990), pp. 99-130 | MR | Zbl
[22.] Hilbert’s sixteenth problem, Topology, Volume 17 (1978), pp. 53-73 | DOI | MR | Zbl
[23.] Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998), pp. 317-331 | DOI | MR | Zbl
Cité par Sources :