We give a sufficient condition for a metric (homology) manifold to be locally bi-Lipschitz equivalent to an open subset in R n . The condition is a Sobolev condition for a measurable coframe of flat 1-forms. In combination with an earlier work of D. Sullivan, our methods also yield an analytic characterization for smoothability of a Lipschitz manifold in terms of a Sobolev regularity for frames in a cotangent structure. In the proofs, we exploit the duality between flat chains and flat forms, and recently established differential analysis on metric measure spaces. When specialized to R n , our result gives a kind of asymptotic and Lipschitz version of the measurable Riemann mapping theorem as suggested by Sullivan.
@article{PMIHES_2011__113__1_0, author = {Heinonen, Juha and Keith, Stephen}, title = {Flat forms, {bi-Lipschitz} parametrizations, and smoothability of manifolds}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--37}, publisher = {Springer-Verlag}, volume = {113}, year = {2011}, doi = {10.1007/s10240-011-0032-4}, mrnumber = {2805596}, zbl = {1238.30039}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-011-0032-4/} }
TY - JOUR AU - Heinonen, Juha AU - Keith, Stephen TI - Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds JO - Publications Mathématiques de l'IHÉS PY - 2011 SP - 1 EP - 37 VL - 113 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-011-0032-4/ DO - 10.1007/s10240-011-0032-4 LA - en ID - PMIHES_2011__113__1_0 ER -
%0 Journal Article %A Heinonen, Juha %A Keith, Stephen %T Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds %J Publications Mathématiques de l'IHÉS %D 2011 %P 1-37 %V 113 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-011-0032-4/ %R 10.1007/s10240-011-0032-4 %G en %F PMIHES_2011__113__1_0
Heinonen, Juha; Keith, Stephen. Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds. Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 1-37. doi : 10.1007/s10240-011-0032-4. http://www.numdam.org/articles/10.1007/s10240-011-0032-4/
[1.] Regular convergence, Duke Math. J., Volume 11 (1944), pp. 441-450 | DOI | MR | Zbl
[2.] An A 1 weight not comparable with any quasiconformal Jacobian, In the Tradition of Ahlfors-Bers, IV (Contemp. Math., 432), Amer. Math. Soc., Providence (2007), pp. 7-18 | MR | Zbl
[3.] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002), pp. 127-183 | DOI | MR | Zbl
[4.] Bi-Lipschitz parameterization of surfaces, Math. Ann., Volume 327 (2003), pp. 135-169 | DOI | MR | Zbl
[5.] Doubling conformal densities, J. Reine Angew. Math., Volume 541 (2001), pp. 117-141 | DOI | MR | Zbl
[6.] The quasiconformal Jacobian problem, In the Tradition of Ahlfors and Bers, III (Contemp. Math., 355), Amer. Math. Soc., Providence (2004), pp. 77-96 | MR | Zbl
[7.] Logarithmic potentials, quasiconformal flows, and Q-curvature, Duke Math. J., Volume 142 (2008), pp. 197-239 | DOI | MR | Zbl
[8.] On some metrizations of the hyperspace of compact sets, Fundam. Math., Volume 41 (1955), pp. 168-202 | MR | Zbl
[9.] Topology of homology manifolds, Ann. Math., Volume 143 (1996), pp. 435-467 | DOI | MR | Zbl
[10.] Shrinking cell-like decompositions of manifolds. Codimension three, Ann. Math., Volume 110 (1979), pp. 83-112 | DOI | MR | Zbl
[11.] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999), pp. 428-517 | DOI | MR | Zbl
[12.] Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology, Volume 33 (1994), pp. 663-681 | DOI | MR | Zbl
[13.] Fractured Fractals and Broken Dreams: Self-similar Geometry Through Metric and Measure, Oxford Lecture Series in Mathematics and its Applications, 7, Clarendon, Oxford, 1997 | MR | Zbl
[14.] The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians, Acad. Sci. Fennica, Helsinki (1980), pp. 111-127 | MR | Zbl
[15.] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992 | MR | Zbl
[16.] Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969 | MR | Zbl
[17.] On the smoothing problem, Tsukuba J. Math., Volume 25 (2001), pp. 13-45 | MR | Zbl
[18.] Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, 152, Birkhäuser, Boston, 1999 | MR | Zbl
[19.] Geometric finiteness theorems via controlled topology, Invent. Math., Volume 99 (1990), pp. 205-213 | DOI | MR | Zbl
[20.] Lectures on Analysis on Metric Spaces, Springer, New York, 2001 | MR | Zbl
[21.] The branch set of a quasiregular mapping, Proceedings of the International Congress of Mathematicians, vol. II, Higher Ed. Press, Beijing (2002), pp. 691-700 | MR | Zbl
[22.] Lectures on Lipschitz Analysis, Report. University of Jyväskylä Department of Mathematics and Statistics, 100, University of Jyväskylä, Jyväskylä, 2005 | MR | Zbl
[23.] BLD-mappings in W 2,2 are locally invertible, Math. Ann., Volume 318 (2000), pp. 391-396 | DOI | MR | Zbl
[24.] Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1-61 | DOI | MR | Zbl
[25.] Geometric branched covers between generalized manifolds, Duke Math. J., Volume 113 (2002), pp. 465-529 | DOI | MR | Zbl
[26.] On the locally branched Euclidean metric gauge, Duke Math. J., Volume 114 (2002), pp. 15-41 | DOI | MR | Zbl
[27.] Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math., Volume 85 (2001), pp. 87-139 | DOI | MR | Zbl
[28.] Smoothings of Piecewise Linear Manifolds, Annals of Mathematics Studies, 80, Princeton University Press, Princeton, 1974 | MR | Zbl
[29.] Modulus and the Poincaré inequality on metric measure spaces, Math. Z., Volume 245 (2003), pp. 255-292 | DOI | MR | Zbl
[30.] A differentiable structure for metric measure spaces, Adv. Math., Volume 183 (2004), pp. 271-315 | DOI | MR | Zbl
[31.] Measurable differentiable structures and the Poincaré inequality, Indiana Univ. Math. J., Volume 53 (2004), pp. 1127-1150 | DOI | MR | Zbl
[32.] The Poincaré inequality is an open ended condition, Ann. Math., Volume 167 (2008), pp. 575-599 | DOI | MR | Zbl
[33.] Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annals of Mathematics Studies, 80, Princeton University Press, Princeton, 1977 (With notes by John Milnor and Michael Atiyah) | MR | Zbl
[34.] Upper gradients and Poincaré inequalities, Lecture Notes on Analysis in Metric Spaces, Appunti Corsi Tenuti Docenti Sc. Scuola Norm. Sup., Pisa (2000), pp. 55-69 | MR | Zbl
[35.] Plane with A ∞-weighted metric not bi-Lipschitz embeddable to $\Bbb{R}\sp N$ , Bull. Lond. Math. Soc., Volume 34 (2002), pp. 667-676 | DOI | MR | Zbl
[36.] Elements of Lipschitz topology, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 3 (1977), pp. 85-122 | MR | Zbl
[37.] Elliptic equations and maps of bounded length distortion, Math. Ann., Volume 282 (1988), pp. 423-443 | DOI | MR | Zbl
[38.] Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[39.] Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians, Inst. Mittag-Leffler, Djursholm (1963), pp. 132-138 | MR | Zbl
[40.] Characteristic Classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, 1974 | MR | Zbl
[41.] Geometric Topology in Dimensions 2 and 3, Graduate Texts in Mathematics, 47, Springer, New York, 1977 | MR | Zbl
[42.] On surfaces of finite total curvature, J. Differ. Geom., Volume 42 (1995), pp. 229-258 | MR | Zbl
[43.] Obstructions to imposing differentiable structures, Ill. J. Math., Volume 8 (1964), pp. 361-376 | MR | Zbl
[44.] Smoothing a topological manifold, Topol. Appl., Volume 124 (2002), pp. 487-503 | DOI | MR | Zbl
[45.] An obstruction to the resolution of homology manifolds, Mich. Math. J., Volume 34 (1987), pp. 285-291 | DOI | MR | Zbl
[46.] Space mappings with bounded distortion, Sib. Mat. Zh., Volume 8 (1967), pp. 629-659 | MR | Zbl
[47.] Space Mappings with Bounded Distortion, Translations of Mathematical Monographs, 73, American Mathematical Society, Providence, 1989 (Translated from the Russian by H. H. McFaden) | MR | Zbl
[48.] Quasiregular Mappings, Springer, Berlin, 1993 | MR | Zbl
[49.] Bi-Lipschitz mappings and strong A ∞ weights, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 18 (1993), pp. 211-248 | MR | Zbl
[50.] Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Sel. Math., Volume 2 (1996), pp. 155-295 | DOI | MR | Zbl
[51.] Good metric spaces without good parameterizations, Rev. Mat. Iberoam., Volume 12 (1996), pp. 187-275 | MR | Zbl
[52.] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A ∞-weights, Rev. Mat. Iberoam., Volume 12 (1996), pp. 337-410 | MR | Zbl
[53.] On a distance function on the set of differentiable structures, Osaka J. Math., Volume 3 (1966), pp. 65-79 | MR | Zbl
[54.] On the smoothing problem and the size of a topological manifold, Osaka J. Math., Volume 3 (1966), pp. 293-301 | MR | Zbl
[55.] On complexes that are Lipschitz manifolds, Geometric Topology, Academic Press, New York (1979), pp. 503-525 | MR | Zbl
[56.] Hyperbolic geometry and homeomorphisms, Geometric Topology, Academic Press, New York (1979), pp. 543-555 | MR | Zbl
[57.] Exterior d, the local degree, and smoothability, Prospects in Topology (Ann. of Math. Stud., 138), Princeton Univ. Press, Princeton (1995), pp. 328-338 | MR | Zbl
[58.] D. Sullivan, The Ahlfors-Bers measurable Riemann mapping theorem for higher dimensions. Lecture at the Ahlfors celebration, Stanford University, September 1997, http://www.msri.org/publications/ln/hosted/ahlfors/1997/sullivan/1/index.html.
[59.] On the Foundation of Geometry, Analysis, and the Differentiable Structure for Manifolds, Topics in Low-Dimensional Topology, World Sci. Publishing, River Edge (1999), pp. 89-92 | MR | Zbl
[60.] The index of signature operators on Lipschitz manifolds, Inst. Hautes Études Sci. Publ. Math., Volume 58 (1984), pp. 39-78 | MR
[61.] Surfaces with generalized second fundamental form in L 2 are Lipschitz manifolds, J. Differ. Geom., Volume 39 (1994), pp. 65-101 | MR | Zbl
[62.] Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J., Volume 77 (1995), pp. 193-227 | DOI | MR | Zbl
[63.] Minimal mappings in Euclidean spaces, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 366 (1965), p. 22 | MR | Zbl
[64.] Exhaustions of John domains, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 19 (1994), pp. 47-57 | MR | Zbl
[65.] Manifolds with transverse fields in Euclidean space, Ann. Math., Volume 73 (1961), pp. 154-212 | DOI | MR | Zbl
[66.] Geometric Integration Theory, Princeton University Press, Princeton, 1957 | MR | Zbl
[67.] K. Wildrick, Quasisymmetric structures on surfaces. Preprint, September 2007. | MR | Zbl
[68.] K. Wildrick, Quasisymmetric Parameterizations of Two-Dimensional Metric Spaces, PhD thesis, University of Michigan, 2007. | MR
Cité par Sources :