We extend the methods of Wiles and of Taylor and Wiles from to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers), minimally ramified, -adic lifts of certain automorphic mod Galois representations of any dimension. We also make a conjecture about the structure of mod automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for . Following Wiles' method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.
@article{PMIHES_2008__108__1_0, author = {Clozel, Laurent and Harris, Michael and Taylor, Richard}, title = {Automorphy for some $l$-adic lifts of automorphic mod $l$ {Galois} representations}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--181}, publisher = {Springer-Verlag}, volume = {108}, year = {2008}, doi = {10.1007/s10240-008-0016-1}, mrnumber = {2470687}, zbl = {1169.11020}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-008-0016-1/} }
TY - JOUR AU - Clozel, Laurent AU - Harris, Michael AU - Taylor, Richard TI - Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations JO - Publications Mathématiques de l'IHÉS PY - 2008 SP - 1 EP - 181 VL - 108 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-008-0016-1/ DO - 10.1007/s10240-008-0016-1 LA - en ID - PMIHES_2008__108__1_0 ER -
%0 Journal Article %A Clozel, Laurent %A Harris, Michael %A Taylor, Richard %T Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations %J Publications Mathématiques de l'IHÉS %D 2008 %P 1-181 %V 108 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-008-0016-1/ %R 10.1007/s10240-008-0016-1 %G en %F PMIHES_2008__108__1_0
Clozel, Laurent; Harris, Michael; Taylor, Richard. Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. Publications Mathématiques de l'IHÉS, Tome 108 (2008), pp. 1-181. doi : 10.1007/s10240-008-0016-1. http://www.numdam.org/articles/10.1007/s10240-008-0016-1/
1. Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud. 120 (1989), Princeton University Press, Princeton, NJ | MR | Zbl
, ,2. Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér. 10 (1977), p. 441-472 | Numdam | MR | Zbl
, ,3. Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in: p-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Contemp. Math. 165 (1994), Amer. Math. Soc., Providence, RI | Zbl
,4. On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. 72 (1993), p. 757-795 | MR | Zbl
,5. Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to “Cohomologie, stabilisation et changement de base”, Astérisque 257 (1999), p. 120-132 | MR
, ,6. Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci. 45 (1975), p. 169-191 | Numdam | MR | Zbl
, , ,7. Methods of Representation Theory I, (1981), Wiley Interscience, New York | MR | Zbl
, ,8. H. Darmon, F. Diamond, and R. Taylor, Fermat's last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. | MR | Zbl
9. The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), p. 379-391 | MR | Zbl
,10. M. Dickinson, A criterion for existence of a universal deformation ring, appendix to “Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001.
11. Nonoptimal levels of mod l modular representations, Invent. Math. 115 (1994), p. 435-462 | MR | Zbl
, ,12. Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér. 15 (1982), p. 547-608 | Numdam | MR | Zbl
, ,13. The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud. 151 (2001), Princeton University Press, Princeton, NJ | MR | Zbl
, ,14. M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math.
15. Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. | MR | Zbl
16. On Euler products and the classification of automorphic forms I, Amer. J. Math. 103 (1981), p. 499-558 | MR | Zbl
, ,17. On Euler products and the classification of automorphic forms II, Amer. J. Math. 103 (1981), p. 777-815 | MR | Zbl
, ,18. Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), p. 199-214 | MR | Zbl
, , ,19. Module universel en caractéristique l>0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec , J. Algebra 213 (1999), p. 662-686 | MR | Zbl
,20. H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, MA, 1995. | MR | Zbl
21. W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001). | MR
22. W. R. Mann, Local level-raising on GL(n), partial preprint. | MR
23. Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér. 37 (2004), p. 171-222 | Numdam | MR | Zbl
,24. B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat's Last Theorem (Boston, MA, 1995), Springer, New York, 1997. | MR | Zbl
25. Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér. 22 (1989), p. 605-674 | Numdam | MR | Zbl
, ,26. On subgroups of , Invent. Math. 88 (1987), p. 257-275 | MR | Zbl
,27. Cohomology of Number Fields, Grundl. Math. Wiss. 323 (1989), Springer, Berlin | MR | Zbl
, , ,28. On a variation of Mazur's deformation functor, Compos. Math. 87 (1993), p. 269-286 | Numdam | MR | Zbl
,29. Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur, Ann. Math. 156 (2002), p. 115-154 | MR | Zbl
,30. K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. | MR | Zbl
31. Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér. 31 (1998), p. 361-413 | Numdam | MR | Zbl
,32. Abelian l-adic Representations and Elliptic Curves, (1968), Benjamin, New York, Amsterdam | MR | Zbl
,33. Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), p. 513-530 | MR | Zbl
,34. On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad. 52 (1976), p. 180-182 | MR | Zbl
,35. Base change and a problem of Serre, Duke Math. J. 107 (2001), p. 15-25 | MR | Zbl
, ,36. J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979. | MR | Zbl
37. R. Taylor, Automorphy for some -adic lifts of automorphic mod Galois representations. II, this volume. | Numdam | Zbl
38. Deformations of Galois Representations and Hecke Algebras, (2002), Mehta Institute, New Dehli | Zbl
,39. Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), p. 553-572 | MR | Zbl
, ,40. Représentations l-modulaires d’un groupe réductif p-adique avec , Progr. Math. 137 (1996), Birkhäuser, Boston, MA | Zbl
,41. Induced R-representations of p-adic reductive groups, Sel. Math., New Ser. 4 (1998), p. 549-623 | Zbl
,42. Modular elliptic curves and Fermat's last theorem, Ann. Math. 141 (1995), p. 443-551 | MR | Zbl
,Cité par Sources :