Nonabelian Hodge theory in characteristic p
Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138.

Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.

@article{PMIHES_2007__106__1_0,
     author = {Ogus, A. and Vologodsky, V.},
     title = {Nonabelian {Hodge} theory in characteristic $p$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--138},
     publisher = {Springer},
     volume = {106},
     year = {2007},
     doi = {10.1007/s10240-007-0010-z},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-007-0010-z/}
}
TY  - JOUR
AU  - Ogus, A.
AU  - Vologodsky, V.
TI  - Nonabelian Hodge theory in characteristic $p$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 1
EP  - 138
VL  - 106
PB  - Springer
UR  - http://www.numdam.org/articles/10.1007/s10240-007-0010-z/
DO  - 10.1007/s10240-007-0010-z
LA  - en
ID  - PMIHES_2007__106__1_0
ER  - 
%0 Journal Article
%A Ogus, A.
%A Vologodsky, V.
%T Nonabelian Hodge theory in characteristic $p$
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 1-138
%V 106
%I Springer
%U http://www.numdam.org/articles/10.1007/s10240-007-0010-z/
%R 10.1007/s10240-007-0010-z
%G en
%F PMIHES_2007__106__1_0
Ogus, A.; Vologodsky, V. Nonabelian Hodge theory in characteristic $p$. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138. doi : 10.1007/s10240-007-0010-z. http://www.numdam.org/articles/10.1007/s10240-007-0010-z/

1. A. Beilinson, On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984-1986), Lect. Notes Math., vol. 1289, Springer, Berlin Heidelberg New York, 1987. | MR | Zbl

2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, 100 (1982), 5-171 | MR | Zbl

3. P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton, N.J. (1978) | MR | Zbl

4. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple lie algebra in prime characteristic, Ann. Math., to appear, arXiv:math RT/0205144v5.

5. A. Braverman, R. Bezrukavnikov, Geometric Langlands correspondence for 𝒟-modules in prime characteristic: the Gl(n) case, Pure Appl. Math. Q., 3 (2007), 153-179 | MR

6. P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer, Berlin Heidelberg New York (1970) | MR | Zbl

7. P. Deligne, Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., 40 (1972), 5-57 | Numdam | MR | Zbl

8. P. Deligne, L. Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247-270 | MR | Zbl

9. P. Deligne and J. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math., vol. 900, Springer, Berlin Heidelberg New York, 1982. | MR | Zbl

10. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York (1999) | MR | Zbl

11. G. Faltings, Crystalline cohomology and p-adic Galois representations, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, pp. 25-80, The Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl

12. G. Faltings, Crystalline cohomology of semistable curve - the Qp -theory, J. Algebr. Geom., 6 (1997), 1-18 | MR | Zbl

13. A. Grothendieck, J. Dieudonné, Elements de géométrie algébrique: étude locale des schémas et des morphismes des schémas, Publ. Math., Inst. Hautes Étud. Sci., 24 (1964), 5-231 | Numdam | Zbl

14. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Grundlehren der mathematischen Wissenschaften, vol. 166, Springer, 1971. | Zbl

15. L. Illusie, Complexe Cotangent et Déformations I, Springer, Berlin Heidelberg New York (1971) | MR | Zbl

16. K. Joshi, C.S. Rajan, Frobenius splitting and ordinarity, Int. Math. Res. Not., 2 (2003), 109-121 | MR | Zbl

17. K. Kato, Logarithmic structures of Fontaine-Illusie, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore London, 1989. | MR | Zbl

18. N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci., 39 (1970), 175-232 | Numdam | MR | Zbl

19. N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118 | MR | Zbl

20. G. Laumon, Sur la catégorie dérivée des D-modules filtrées, in Algebraic Geometry (Tokyo-Kyoto), pp. 151-237, Springer, Berlin Heidelberg New York, 1983. | MR | Zbl

21. B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 78 (1972), 653-667 | MR | Zbl

22. B. Mazur, W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Springer, Berlin Heidelberg New York (1974) | MR | Zbl

23. J. Milne, Étale Cohomology, Princeton University Press, Princeton, N.J. (1980) | MR | Zbl

24. A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236 | Zbl

25. A. Neeman, Triangulated Categories, Princeton University Press, Princeton, N.J. (2001) | MR | Zbl

26. A. Ogus, F-crystals and Griffiths transversality. in Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pp. 15-44, Kinokuniya Book-Store, Co., Tokyo, 1977. | MR | Zbl

27. A. Ogus, Griffiths transversality in crystalline cohomology, Ann. Math., 108 (1978), 395-419 | MR | Zbl

28. A. Ogus, F-Crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque, vol. 221, Soc. Math. France, 1994. | MR | Zbl

29. A. Ogus, Higgs cohomology, p-curvature, and the Cartier isomorphism, Compos. Math., 140 (2004), 145-164 | MR | Zbl

30. B. Osserman, Mochizuki's crys-stable bundles: a lexicon and applications, RIMS Kokyuroku, 43 (2007), 95-119

31. M. Raynaud, p-torsion” du schéma de Picard, Astérisque, 64 (1978), 87-149 | Numdam | Zbl

32. N. S. Rivano, Catégories Tannakiennes, Lect. Notes Math., vol. 265, Springer, 1972. | MR

33. N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm. Super., III. Sér., 80 (1963), 213-348 | Numdam | MR | Zbl

34. C. Sabbah, On a twisted de Rham complex, Tohoku Math. J., 51 (1999), 125-140 | MR | Zbl

35. M. Saito, Hodge structure via filtered D-modules, Astérisque, 130 (1985), 342-351 | Numdam | MR | Zbl

36. C. Simpson, Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., 75 (1992), 5-95 | Numdam | MR | Zbl

37. V. Srinivas, Decomposition of the de Rham complex, Proc. Indian Acad. Sci., Math. Sci., 100 (1990), 103-106 | MR | Zbl

38. V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, http://www.math.uiuc.edu/K-theory/443, 2000.

  • Esnault, Hélène; Groechenig, Michael Crystallinity of rigid flat connections revisited, Selecta Mathematica. New Series, Volume 31 (2025) no. 1, p. 38 (Id/No 2) | DOI:10.1007/s00029-024-00995-7 | Zbl:7952071
  • Xu, Da Xin P-adic Simpson correspondence, Acta Mathematica Sinica. Chinese Series, Volume 67 (2024) no. 2, pp. 250-258 | DOI:10.12386/a20230001 | Zbl:7938026
  • Tian, Yi Chao Cohomology of prismatic crystals, Acta Mathematica Sinica. Chinese Series, Volume 67 (2024) no. 2, pp. 357-376 | DOI:10.12386/a20230162 | Zbl:7938035
  • Min, Yu; Wang, Yupeng Integral p-adic non-abelian Hodge theory for small representations, Advances in Mathematics, Volume 458 (2024), p. 71 (Id/No 109950) | DOI:10.1016/j.aim.2024.109950 | Zbl:7940515
  • Bogdanova, Ekaterina; Vologodsky, Vadim On the Bezrukavnikov-Kaledin quantization of symplectic varieties in characteristic p, Compositio Mathematica, Volume 160 (2024) no. 2, pp. 411-450 | DOI:10.1112/s0010437x23007601 | Zbl:7793890
  • Krishnamoorthy, Raju; Sheng, Mao Periodicity of Hitchin’s Uniformizing Higgs Bundles, International Mathematics Research Notices, Volume 2024 (2024) no. 11, p. 9440 | DOI:10.1093/imrn/rnae042
  • Shen, Shiyu Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic, International Mathematics Research Notices, Volume 2024 (2024) no. 7, p. 6176 | DOI:10.1093/imrn/rnae005
  • Langer, Adrian Bogomolov's inequality and Higgs sheaves on normal varieties in positive characteristic, Journal für die Reine und Angewandte Mathematik, Volume 810 (2024), pp. 1-48 | DOI:10.1515/crelle-2023-0101 | Zbl:7840483
  • Sheng, Mao; Zhang, Zebao Intersection de Rham complexes in positive characteristic, Journal of Differential Geometry, Volume 127 (2024) no. 2, pp. 551-602 | DOI:10.4310/jdg/1717772421 | Zbl:7871770
  • de Cataldo, Mark Andrea; Fernandez Herrero, Andres; Zhang, Siqing Geometry of the logarithmic Hodge moduli space, Journal of the London Mathematical Society. Second Series, Volume 109 (2024) no. 1, p. 38 (Id/No e12857) | DOI:10.1112/jlms.12857 | Zbl:1539.14024
  • Li, Shizhang; Zhang, Dingxin Exponentially twisted de Rham cohomology and rigid cohomology, Mathematische Annalen, Volume 390 (2024) no. 1, pp. 639-670 | DOI:10.1007/s00208-023-02772-x | Zbl:7932319
  • Jiang, Yunfeng; Kundu, Promit On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces, Mathematische Zeitschrift, Volume 306 (2024) no. 2, p. 29 (Id/No 32) | DOI:10.1007/s00209-023-03421-4 | Zbl:1541.14026
  • Li, Kimihiko Prismatic and q-crystalline sites of higher level, Rendiconti del Seminario Matematico della Università di Padova, Volume 151 (2024), pp. 137-200 | DOI:10.4171/rsmup/136 | Zbl:7828279
  • Li, Mao; Sun, Hao Tame parahoric nonabelian Hodge correspondence in positive characteristic over algebraic curves, Selecta Mathematica. New Series, Volume 30 (2024) no. 4, p. 36 (Id/No 60) | DOI:10.1007/s00029-024-00954-2 | Zbl:1548.14042
  • Wang, Yupeng A p-adic Simpson correspondence for rigid analytic varieties, Algebra Number Theory, Volume 17 (2023) no. 8, pp. 1453-1499 | DOI:10.2140/ant.2023.17.1453 | Zbl:1531.14032
  • Zhang, Zebao A note on the filtered decomposition theorem, Communications in Mathematics and Statistics, Volume 11 (2023) no. 3, pp. 519-539 | DOI:10.1007/s40304-021-00262-7 | Zbl:1527.14045
  • Bhatt, Bhargav Algebraic geometry in mixed characteristic, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 2. Plenary lectures, Berlin: European Mathematical Society (EMS), 2023, pp. 712-748 | DOI:10.4171/icm2022/113 | Zbl:1532.14049
  • Esnault, Hélène Lecture 9: Rigid Local Systems, Fontaine-Laffaille Modules and Crystalline Local Systems, Local Systems in Algebraic-Arithmetic Geometry, Volume 2337 (2023), p. 75 | DOI:10.1007/978-3-031-40840-3_9
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo Cartier transform and prismatic crystals, Tunisian Journal of Mathematics, Volume 5 (2023) no. 3, p. 405 | DOI:10.2140/tunis.2023.5.405
  • Li, Si; Wen, Hao On the L2-Hodge theory of Landau-Ginzburg models, Advances in Mathematics, Volume 396 (2022), p. 48 (Id/No 108165) | DOI:10.1016/j.aim.2021.108165 | Zbl:1524.58001
  • Bhatt, Bhargav; Scholze, Peter Prisms and prismatic cohomology, Annals of Mathematics. Second Series, Volume 196 (2022) no. 3, pp. 1135-1275 | DOI:10.4007/annals.2022.196.3.5 | Zbl:7611906
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo Twisted divided powers and applications, Journal of Number Theory, Volume 237 (2022), pp. 285-331 | DOI:10.1016/j.jnt.2019.02.009 | Zbl:1497.12006
  • Langer, Adrian Nearby cycles and semipositivity in positive characteristic, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 11, pp. 3829-3872 | DOI:10.4171/jems/1235 | Zbl:1509.14089
  • Sun, Ruiran; Yang, Jinbang; Zuo, Kang Projective crystalline representations of étale fundamental groups and twisted periodic Higgs-de Rham flow, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 6, pp. 1991-2076 | DOI:10.4171/jems/1116 | Zbl:1493.14031
  • Hindry, Marc; Pacheco, Amílcar Erratum to: “An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic”, Moscow Mathematical Journal, Volume 22 (2022) no. 1, p. 169 | Zbl:1490.11063
  • Schneider, Peter; Scholze, Peter; Temkin, Michael; Werner, Annette Non-Archimedean geometry and applications. Abstracts from the workshop held January 30 – February 5, 2022, Oberwolfach Rep. 19, No. 1, 231-302, 2022 | DOI:10.4171/owr/2022/5 | Zbl:1506.00093
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo Twisted differential operators of negative level and prismatic crystals, Tunisian Journal of Mathematics, Volume 4 (2022) no. 1, pp. 19-53 | DOI:10.2140/tunis.2022.4.19 | Zbl:1499.14041
  • Kubrak, Dmitry; Travkin, Roman Resolutions With Conical Slices and Descent for the Brauer Group Classes of Certain Central Reductions of Differential Operators in Characteristicp, International Mathematics Research Notices, Volume 2021 (2021) no. 19, p. 14629 | DOI:10.1093/imrn/rnz169
  • Achinger, Piotr; Zdanowicz, Maciej Serre-Tate theory for Calabi-Yau varieties, Journal für die Reine und Angewandte Mathematik, Volume 780 (2021), pp. 139-196 | DOI:10.1515/crelle-2021-0041 | Zbl:1489.14048
  • Sheng, Mao; Tong, Jilong A note on Higgs-de Rham flows of level zero, Science China. Mathematics, Volume 64 (2021) no. 2, pp. 307-330 | DOI:10.1007/s11425-020-1782-x | Zbl:1472.14031
  • Halpern-Leistner, Daniel; Pomerleano, Daniel Equivariant Hodge theory and noncommutative geometry, Geometry Topology, Volume 24 (2020) no. 5, pp. 2361-2433 | DOI:10.2140/gt.2020.24.2361 | Zbl:1460.14005
  • Groechenig, Michael; Wyss, Dimitri; Ziegler, Paul Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration, Inventiones Mathematicae, Volume 221 (2020) no. 2, pp. 505-596 | DOI:10.1007/s00222-020-00957-8 | Zbl:1451.14123
  • Deninger, Christopher; Werner, Annette Parallel transport for vector bundles on p-adic varieties, Journal of Algebraic Geometry, Volume 29 (2020) no. 1, pp. 1-52 | DOI:10.1090/jag/747 | Zbl:1473.14068
  • Hablicsek, Márton Hodge theorem for the logarithmic de Rham complex via derived intersections, Research in the Mathematical Sciences, Volume 7 (2020) no. 3, p. 21 (Id/No 24) | DOI:10.1007/s40687-020-00222-7 | Zbl:1455.14014
  • Huang, Pengfei Non-abelian Hodge theory and related topics, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020), p. paper | DOI:10.3842/sigma.2020.029 | Zbl:1439.14007
  • Gros, Michel On a q-local deformation of the non-abelian Hodge theory into a positive characteristic, p-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7–13, 2017, Cham: Springer, 2020, pp. 143-160 | DOI:10.1007/978-3-030-43844-9_5 | Zbl:1440.14112
  • Xu, Daxin On higher direct images of convergent isocrystals, Compositio Mathematica, Volume 155 (2019) no. 11, pp. 2180-2213 | DOI:10.1112/s0010437x19007590 | Zbl:1430.14050
  • Bitoun, Thomas On the p-supports of a holonomic {{\mathcal}} {D}-module, Inventiones Mathematicae, Volume 215 (2019) no. 3, pp. 779-818 | DOI:10.1007/s00222-018-0837-6 | Zbl:1442.14066
  • Lan, Guitang; Sheng, Mao; Yang, Yanhong; Zuo, Kang Uniformization of p-adic curves via Higgs-de Rham flows, Journal für die Reine und Angewandte Mathematik, Volume 747 (2019), pp. 63-108 | DOI:10.1515/crelle-2016-0020 | Zbl:1439.14115
  • Arapura, Donu Kodaira-Saito vanishing via Higgs bundles in positive characteristic, Journal für die Reine und Angewandte Mathematik, Volume 755 (2019), pp. 293-312 | DOI:10.1515/crelle-2017-0036 | Zbl:1468.14044
  • Lan, Guitang; Sheng, Mao; Zuo, Kang Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups, Journal of the European Mathematical Society (JEMS), Volume 21 (2019) no. 10, pp. 3053-3112 | DOI:10.4171/jems/897 | Zbl:1444.14048
  • Illusie, Luc Pierre Deligne: A Poet of Arithmetic Geometry, The Abel Prize 2013-2017 (2019), p. 13 | DOI:10.1007/978-3-319-99028-6_2
  • Esnault, Hélène; Shiho, Atsushi Chern classes of crystals, Transactions of the American Mathematical Society, Volume 371 (2019) no. 2, pp. 1333-1358 | DOI:10.1090/tran/7342 | Zbl:1470.11307
  • Esnault, Hélène; Shiho, Atsushi Convergent isocrystals on simply connected varieties, Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 2109-2148 | DOI:10.5802/aif.3204 | Zbl:1423.14132
  • Petrov, Alexander; Vaintrob, Dmitry; Vologodsky, Vadim The Gauss-Manin connection on the periodic cyclic homology, Selecta Mathematica. New Series, Volume 24 (2018) no. 1, pp. 531-561 | DOI:10.1007/s00029-018-0388-0 | Zbl:1431.16010
  • Gross, Mark; Katzarkov, Ludmil; Ruddat, Helge Towards mirror symmetry for varieties of general type, Advances in Mathematics, Volume 308 (2017), pp. 208-275 | DOI:10.1016/j.aim.2016.03.035 | Zbl:1371.14046
  • Arinkin, Dima; Căldăraru, Andrei; Hablicsek, Márton Derived intersections and the Hodge theorem, Algebraic Geometry, Volume 4 (2017) no. 4, pp. 394-423 | DOI:10.14231/ag-2017-021 | Zbl:1401.14114
  • Chen, Tsao-Hsien; Zhu, Xinwen Geometric Langlands in prime characteristic, Compositio Mathematica, Volume 153 (2017) no. 2, pp. 395-452 | DOI:10.1112/s0010437x16008113 | Zbl:1390.14044
  • Esnault, Hélène; Sabbah, Claude; Yu, Jeng-Daw E1-degeneration of the irregular Hodge filtration, Journal für die Reine und Angewandte Mathematik, Volume 729 (2017), pp. 171-227 | DOI:10.1515/crelle-2014-0118 | Zbl:1453.32010
  • Oyama, Hidetoshi PD Higgs crystals and Higgs cohomology in characteristic p, Journal of Algebraic Geometry, Volume 26 (2017) no. 4, pp. 735-802 | DOI:10.1090/jag/699 | Zbl:1400.14059
  • Langer, Adrian The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic, Duke Mathematical Journal, Volume 165 (2016) no. 14 | DOI:10.1215/00127094-3627203
  • Ohkawa, Sachio On log local Cartier transform of higher level in characteristic p, Mathematische Zeitschrift, Volume 283 (2016) no. 3-4, pp. 871-894 | DOI:10.1007/s00209-016-1625-x | Zbl:1345.14026
  • Chen, Tsao-Hsien; Zhu, Xinwen Non-abelian Hodge theory for algebraic curves in characteristic p, Geometric and Functional Analysis. GAFA, Volume 25 (2015) no. 6, pp. 1706-1733 | DOI:10.1007/s00039-015-0343-6 | Zbl:1330.14015
  • Sheng, Mao; Xin, He; Zuo, Kang A note on the characteristic p nonabelian Hodge theory in the geometric case, International Journal of Mathematics, Volume 26 (2015) no. 1, p. 18 (Id/No 1550011) | DOI:10.1142/s0129167x15500111 | Zbl:1331.14026
  • Langer, Adrian Bogomolov's inequality for Higgs sheaves in positive characteristic, Inventiones Mathematicae, Volume 199 (2015) no. 3, pp. 889-920 | DOI:10.1007/s00222-014-0534-z | Zbl:1348.14048
  • Lan, Guitang; Sheng, Mao; Zuo, Kang Nonabelian Hodge theory in positive characteristic via exponential twisting, Mathematical Research Letters, Volume 22 (2015) no. 3, pp. 859-879 | DOI:10.4310/mrl.2015.v22.n3.a12 | Zbl:1326.14016
  • Ohkawa, Sachio On log global Cartier transform of higher level, RIMS Kôkyûroku Bessatsu, Volume B53 (2015), pp. 133-143 | Zbl:1353.13029
  • Ohkawa, Sachio On logarithmic nonabelian Hodge theory of higher level in characteristic p, Rendiconti del Seminario Matematico della Università di Padova, Volume 134 (2015), pp. 47-91 | DOI:10.4171/rsmup/134-2 | Zbl:1366.14022
  • Gros, Michel; Le Stum, Bernard An explicit neutralization of the completed quantum Weyl algebra., Communications in Algebra, Volume 42 (2014) no. 5, pp. 2163-2170 | DOI:10.1080/00927872.2012.758267 | Zbl:1297.16020
  • Li, Lingguang On a conjecture of Lan-Sheng-Zuo on semistable Higgs bundles: rank 3 case, International Journal of Mathematics, Volume 25 (2014) no. 2, p. 11 (Id/No 1450013) | DOI:10.1142/s0129167x1450013x | Zbl:1286.14049
  • Yu, Jeng-Daw Irregular Hodge filtration on twisted de Rham cohomology, Manuscripta Mathematica, Volume 144 (2014) no. 1-2, pp. 99-133 | DOI:10.1007/s00229-013-0642-x | Zbl:1291.14040
  • Katzarkov, Ludmil; Kontsevich, Maxim; Pantev, Tony Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models, arXiv (2014) | DOI:10.48550/arxiv.1409.5996 | arXiv:1409.5996
  • Stadnik, Theodore J. jun. Étale splittings of certain Azumaya algebras on toric and hypertoric varieties in positive characteristic, Advances in Mathematics, Volume 233 (2013) no. 1, pp. 268-290 | DOI:10.1016/j.aim.2012.10.008 | Zbl:1295.14019
  • Sheng, Mao; Zhang, Jiajin; Zuo, Kang Higgs bundles over the good reduction of a quaternionic Shimura curve, Journal für die Reine und Angewandte Mathematik, Volume 671 (2012), pp. 223-248 | DOI:10.1515/crelle.2011.158 | Zbl:1272.14025
  • Gros, Michel; Le Stum, Bernard; Quirós, Adolfo A Simpson correspondence in positive characteristic, Publications of the Research Institute for Mathematical Sciences, Kyoto University, Volume 46 (2010) no. 1, pp. 1-35 | DOI:10.2977/prims/1 | Zbl:1200.14036
  • Kontsevich, Maxim Holonomic D-modules and positive characteristic, Japanese Journal of Mathematics. 3rd Series, Volume 4 (2009) no. 1, pp. 1-25 | DOI:10.1007/s11537-009-0852-x | Zbl:1215.14014
  • Lu, Jun; Sheng, Mao; Zuo, Kang An Arakelov inequality in characteristic p and upper bound of p-rank zero locus, Journal of Number Theory, Volume 129 (2009) no. 12, pp. 3029-3045 | DOI:10.1016/j.jnt.2009.05.015 | Zbl:1222.14056
  • Schwarz, Albert S.; Shapiro, Ilya Twisted de Rham cohomology, homological definition of the integral and “physics over a ring”, Nuclear Physics. B, Volume 809 (2009) no. 3, pp. 547-560 | DOI:10.1016/j.nuclphysb.2008.10.005 | Zbl:1192.81311
  • Nevins, Thomas Mirabolic Langlands duality and the quantum Calogero-Moser system, Transformation Groups, Volume 14 (2009) no. 4, pp. 931-983 | DOI:10.1007/s00031-009-9068-7 | Zbl:1200.37068
  • Katzarkov, L.; Kontsevich, M.; Pantev, T. Hodge theoretic aspects of mirror symmetry, arXiv (2008) | DOI:10.48550/arxiv.0806.0107 | arXiv:0806.0107
  • Bezrukavnikov, Roman; Mirković, Ivan; Rumynin, Dmitriy Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Mathematical Journal, Volume 184 (2006), pp. 1-55 | DOI:10.1017/s0027763000009302 | Zbl:1125.17006
  • Bezrukavnikov, Roman Noncommutative Counterparts of the Springer Resolution, arXiv (2006) | DOI:10.48550/arxiv.math/0604445 | arXiv:math/0604445
  • Bezrukavnikov, Roman; Braverman, Alexander Geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case, arXiv (2006) | DOI:10.48550/arxiv.math/0602255 | arXiv:math/0602255
  • Bezrukavnikov, Roman; Mirkovic, Ivan; Rumynin, Dmitry Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, arXiv (2006) | DOI:10.48550/arxiv.math/0602075 | arXiv:math/0602075
  • Belov-Kanel, Alexei; Kontsevich, Maxim Automorphisms of the Weyl algebra., Letters in Mathematical Physics, Volume 74 (2005) no. 2, pp. 181-199 | DOI:10.1007/s11005-005-0027-5 | Zbl:1081.16031

Cité par 75 documents. Sources : Crossref, NASA ADS, zbMATH