Cross ratios, surface groups, PSL(n,𝐑) and diffeomorphisms of the circle
Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 139-213.

This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL (n,𝐑) - known as the n-Hitchin component - to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into C 1,h (𝕋)Diff h (𝕋) associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains all n-Hitchin components as well as the set of negatively curved metrics on the surface.

@article{PMIHES_2007__106__139_0,
     author = {Labourie, Fran\c{c}ois},
     title = {Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {139--213},
     publisher = {Springer},
     volume = {106},
     year = {2007},
     doi = {10.1007/s10240-007-0009-5},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-007-0009-5/}
}
TY  - JOUR
AU  - Labourie, François
TI  - Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 139
EP  - 213
VL  - 106
PB  - Springer
UR  - http://www.numdam.org/articles/10.1007/s10240-007-0009-5/
DO  - 10.1007/s10240-007-0009-5
LA  - en
ID  - PMIHES_2007__106__139_0
ER  - 
%0 Journal Article
%A Labourie, François
%T Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 139-213
%V 106
%I Springer
%U http://www.numdam.org/articles/10.1007/s10240-007-0009-5/
%R 10.1007/s10240-007-0009-5
%G en
%F PMIHES_2007__106__139_0
Labourie, François. Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 139-213. doi : 10.1007/s10240-007-0009-5. http://www.numdam.org/articles/10.1007/s10240-007-0009-5/

1. D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Tr. Mat. Inst. Steklova, vol. 90, 1967. | MR | Zbl

2. M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, 308 (1983), 523-615 | MR | Zbl

3. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162 | MR | Zbl

4. M. Bourdon, Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Études Sci., 83 (1996), 95-104 | Numdam | MR | Zbl

5. S.B. Bradlow, O. García-Prada, P.B. Gothen, Maximal surface group representations in isometry groups of classical hermitian symmetric spaces, Geom. Dedicata, 122 (2006), 185-213 | MR | Zbl

6. S.B. Bradlow, O. García-Prada, P.B. Gothen, Surface group representations and U(p,q)-Higgs bundles, J. Differ. Geom., 64 (2003), 111-170 | MR | Zbl

7. S.B. Bradlow, O. García-Prada, P.B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 328 (2004), 299-351 | MR | Zbl

8. M. Burger, A. Iozzi, F. Labourie, A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., 1 (2005), 543-590 | MR

9. M. Burger, A. Iozzi, A. Wienhard, Surface group representations with maximal Toledo invariant, C. R., Math., Acad. Sci. Paris, 336 (2003), 387-390 | MR | Zbl

10. C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29-55. | MR | Zbl

11. V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Études Sci., 103 (2006), 1-211 | Numdam | MR | Zbl

12. O. García-Prada, I. Mundet I Riera, Representations of the fundamental group of a closed oriented surface in Sp(4,ℝ), Topology, 43 (2004), 831-855 | MR | Zbl

13. É. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Éc. Norm. Supér., IV. Sér., 20 (1987), 251-270 | Numdam | Zbl

14. W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225 | MR | Zbl

15. W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302 | MR | Zbl

16. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Symp. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43-96. | MR | Zbl

17. P.B. Gothen, Components of spaces of representations and stable triples, Topology, 40 (2001), 823-850 | MR | Zbl

18. O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, to appear in J. Differ. Geom, (2005).

19. U. Hamenstädt, Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., 17 (1997), 1061-1081 | MR | Zbl

20. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., III. Ser., 55 (1987), 59-126 | MR | Zbl

21. N.J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), 449-473 | MR | Zbl

22. F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, to appear in Ann. Sci. Éc. Norm. Supér., IV. Sér.

23. F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51-114 | MR | Zbl

24. F. Labourie and G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, math.DG/0611245, 2006.

25. F. Ledrappier, Structure au bord des variétés à courbure négative, Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994-1995, Sémin. Théor. Spectr. Géom., vol. 13, Univ. Grenoble I, Saint, 1995, pp. 97-122. | Numdam | MR | Zbl

26. G. Mcshane, Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132 (1998), 607-632 | MR | Zbl

27. J.-P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. (2), 131 (1990), 151-162 | MR | Zbl

28. J.-P. Otal, Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Mat. Iberoam., 8 (1992), 441-456 | Zbl

29. A. Weinstein, The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 627-635. | MR | Zbl

Cité par Sources :