Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of algebras is faithful but not full.
@article{PMIHES_2006__103__213_0, author = {Mandell, Michael A.}, title = {Cochains and homotopy type}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {213--246}, publisher = {Springer}, volume = {103}, year = {2006}, doi = {10.1007/s10240-006-0037-6}, mrnumber = {2233853}, zbl = {1105.55003}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-006-0037-6/} }
Mandell, Michael A. Cochains and homotopy type. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246. doi : 10.1007/s10240-006-0037-6. http://www.numdam.org/articles/10.1007/s10240-006-0037-6/
1. The localization of spaces with respect to homology, Topology, 14 (1975), 133-150. | MR | Zbl
,2. A generalization of the Whitehead theorem, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, WA 1971), Lect. Notes Math., vol. 249, Springer, Berlin, 1971, pp. 13-22. | MR | Zbl
,3. Simplicial localizations of categories, J. Pure Appl. Algebra, 17 (1980), 267-284. | MR | Zbl
and ,4. Calculating simplicial localizations, J. Pure Appl. Algebra, 18 (1980), 17-35. | MR | Zbl
and ,5. Function complexes in homotopical algebra, Topology, 19 (1980), 427-440. | MR | Zbl
and ,6. Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126. | MR | Zbl
and ,7. Virtual operad algebras and realization of homotopy types, J. Pure Appl. Algebra, 159 (2001), 173-185. | MR | Zbl
,8. Equivalence of simplicial localizations of closed model categories, J. Pure Appl. Algebra, 142 (1999), 131-152. | MR | Zbl
,9. E∞ algebras and p-adic homotopy theory, Topology, 40 (2001), 43-94. | Zbl
,10. Equivariant p-adic homotopy theory, Topology Appl., 122 (2002), 637-651. | MR | Zbl
,11. Simplicial objects in algebraic topology, D. Van Nostrand Co., Inc., Princeton, NJ - Toronto, ON - London, 1967. | MR | Zbl
,12. Homotopical algebra, Lect. Notes Math., vol. 43, Springer, Berlin, 1967. | MR | Zbl
,13. Rational homotopy theory, Ann. Math., 90 (1969), 205-295. | MR | Zbl
,14. Local fields, Springer, New York, 1979. Translated from the French by M. J. Greenberg. | MR | Zbl
,15. Homotopy theory of coalgebras, Math. USSR-Izv., 27 (1986), 575-592. | MR | Zbl
,16. J. R. Smith, Operads and algebraic homotopy, preprint math.AT/0004003.
17. The genetics of homotopy theory and the Adams conjecture, Ann. Math., 100 (1974), 1-79. | MR | Zbl
,18. Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1978), 269-331. | Numdam | MR | Zbl
,Cité par Sources :