Cochains and homotopy type
Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246.

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.

@article{PMIHES_2006__103__213_0,
     author = {Mandell, Michael A.},
     title = {Cochains and homotopy type},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {213--246},
     publisher = {Springer},
     volume = {103},
     year = {2006},
     doi = {10.1007/s10240-006-0037-6},
     mrnumber = {2233853},
     zbl = {1105.55003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-006-0037-6/}
}
TY  - JOUR
AU  - Mandell, Michael A.
TI  - Cochains and homotopy type
JO  - Publications Mathématiques de l'IHÉS
PY  - 2006
SP  - 213
EP  - 246
VL  - 103
PB  - Springer
UR  - http://www.numdam.org/articles/10.1007/s10240-006-0037-6/
DO  - 10.1007/s10240-006-0037-6
LA  - en
ID  - PMIHES_2006__103__213_0
ER  - 
%0 Journal Article
%A Mandell, Michael A.
%T Cochains and homotopy type
%J Publications Mathématiques de l'IHÉS
%D 2006
%P 213-246
%V 103
%I Springer
%U http://www.numdam.org/articles/10.1007/s10240-006-0037-6/
%R 10.1007/s10240-006-0037-6
%G en
%F PMIHES_2006__103__213_0
Mandell, Michael A. Cochains and homotopy type. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246. doi : 10.1007/s10240-006-0037-6. http://www.numdam.org/articles/10.1007/s10240-006-0037-6/

1. A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14 (1975), 133-150. | MR | Zbl

2. E. Dror, A generalization of the Whitehead theorem, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, WA 1971), Lect. Notes Math., vol. 249, Springer, Berlin, 1971, pp. 13-22. | MR | Zbl

3. W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra, 17 (1980), 267-284. | MR | Zbl

4. W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra, 18 (1980), 17-35. | MR | Zbl

5. W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology, 19 (1980), 427-440. | MR | Zbl

6. W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126. | MR | Zbl

7. V. Hinich, Virtual operad algebras and realization of homotopy types, J. Pure Appl. Algebra, 159 (2001), 173-185. | MR | Zbl

8. M. A. Mandell, Equivalence of simplicial localizations of closed model categories, J. Pure Appl. Algebra, 142 (1999), 131-152. | MR | Zbl

9. M. A. Mandell, E∞ algebras and p-adic homotopy theory, Topology, 40 (2001), 43-94. | Zbl

10. M. A. Mandell, Equivariant p-adic homotopy theory, Topology Appl., 122 (2002), 637-651. | MR | Zbl

11. J. P. May, Simplicial objects in algebraic topology, D. Van Nostrand Co., Inc., Princeton, NJ - Toronto, ON - London, 1967. | MR | Zbl

12. D. G. Quillen, Homotopical algebra, Lect. Notes Math., vol. 43, Springer, Berlin, 1967. | MR | Zbl

13. D. G. Quillen, Rational homotopy theory, Ann. Math., 90 (1969), 205-295. | MR | Zbl

14. J.-P. Serre, Local fields, Springer, New York, 1979. Translated from the French by M. J. Greenberg. | MR | Zbl

15. V. A. Smirnov, Homotopy theory of coalgebras, Math. USSR-Izv., 27 (1986), 575-592. | MR | Zbl

16. J. R. Smith, Operads and algebraic homotopy, preprint math.AT/0004003.

17. D. Sullivan, The genetics of homotopy theory and the Adams conjecture, Ann. Math., 100 (1974), 1-79. | MR | Zbl

18. D. Sullivan, Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1978), 269-331. | Numdam | MR | Zbl

Cité par Sources :