The GL 2 main conjecture for elliptic curves without complex multiplication
Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 163-208.

Let G be a compact p-adic Lie group, with no element of order p, and having a closed normal subgroup H such that G/H is isomorphic to 𝐙 p . We prove the existence of a canonical Ore set S * of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S * , we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its p-primary submodule is finitely generated over the Iwasawa algebra of H. We discuss the evaluation of this characteristic element at Artin representations of G, and its relation to the G-Euler characteristics of the twists of M by such representations. Finally, we illustrate the arithmetic applications of these ideas by formulating a precise version of the main conjecture of Iwasawa theory for an elliptic curve E over 𝐐, without complex multiplication, over the field F generated by the coordinates of all its p-power division points; here p is a prime at least 5 where E has good ordinary reduction, and G is the Galois group of F over 𝐐.

DOI : 10.1007/s10240-004-0029-3
Coates, John  ; Fukaya, Takako  ; Kato, Kazuya  ; Sujatha, Ramdorai 1 ; Venjakob, Otmar 

1 School of Mathematics, TIFR, Homi Bhabha Road Bombay 400 005, India
@article{PMIHES_2005__101__163_0,
     author = {Coates, John and Fukaya, Takako and Kato, Kazuya and Sujatha, Ramdorai and Venjakob, Otmar},
     title = {The $GL_2$ main conjecture for elliptic curves without complex multiplication},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {163--208},
     publisher = {Springer},
     volume = {101},
     year = {2005},
     doi = {10.1007/s10240-004-0029-3},
     zbl = {1108.11081},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-004-0029-3/}
}
TY  - JOUR
AU  - Coates, John
AU  - Fukaya, Takako
AU  - Kato, Kazuya
AU  - Sujatha, Ramdorai
AU  - Venjakob, Otmar
TI  - The $GL_2$ main conjecture for elliptic curves without complex multiplication
JO  - Publications Mathématiques de l'IHÉS
PY  - 2005
SP  - 163
EP  - 208
VL  - 101
PB  - Springer
UR  - http://www.numdam.org/articles/10.1007/s10240-004-0029-3/
DO  - 10.1007/s10240-004-0029-3
LA  - en
ID  - PMIHES_2005__101__163_0
ER  - 
%0 Journal Article
%A Coates, John
%A Fukaya, Takako
%A Kato, Kazuya
%A Sujatha, Ramdorai
%A Venjakob, Otmar
%T The $GL_2$ main conjecture for elliptic curves without complex multiplication
%J Publications Mathématiques de l'IHÉS
%D 2005
%P 163-208
%V 101
%I Springer
%U http://www.numdam.org/articles/10.1007/s10240-004-0029-3/
%R 10.1007/s10240-004-0029-3
%G en
%F PMIHES_2005__101__163_0
Coates, John; Fukaya, Takako; Kato, Kazuya; Sujatha, Ramdorai; Venjakob, Otmar. The $GL_2$ main conjecture for elliptic curves without complex multiplication. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 163-208. doi : 10.1007/s10240-004-0029-3. http://www.numdam.org/articles/10.1007/s10240-004-0029-3/

1. K. Ardakov and K. Brown, Primeness, Semiprimeness and localization in Iwasawa algebras, preprint (2004). | MR

2. H. Bass, Algebraic K-theory, Benjamin, New York (1968). | MR | Zbl

3. P. Balister, Congruences between special values of L-functions (unpublished) (1998).

4. N. Bourbaki, Commutative Algebra, Springer (1991).

5. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470. | MR | Zbl

6. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients I, Doc. Math. 6 (2001), 501-570. | MR | Zbl

7. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients II, Am. J. Math. 125 (2003), 475-512. | MR

8. J. Coates and S. Howson, Euler characteristics and elliptic curves II, J. Math. Soc. Japan Proc. 53 (2001), 175-235. | MR | Zbl

9. J. Coates, P. Schneider, and R. Sujatha, Links between cyclotomic and GL2 Iwasawa theory, Doc. Math. Extra Volume: Kazuya Kato's 50th birthday (2003), 187-215.

10. J. Coates, P. Schneider, and R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (2003), 73-108. | MR | Zbl

11. J. Coates and R. Sujatha, Euler-Poincaré characteristics of abelian varieties, CRAS 329, Série I (1999), 309-313. | MR | Zbl

12. J. Coates and R. Sujatha, Galois cohomology of elliptic curves, TIFR Lecture notes series, Narosa Publishing House (2000). | MR | Zbl

13. P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable II, LNM 349, Springer (1973), 501-597. | MR | Zbl

14. P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions, Part 2, Amer. Math. Soc. (1979), 313-346. | Zbl

15. T. Dokchitser and V. Dokchitser, Numerical calculations in non-commutative Iwasawa theory, preprint (2004).

16. T. Fisher, Descent calculations for the elliptic curves of conductor 11, Proc. Lond. Math. Soc. 86 (2003), 583-606. | MR | Zbl

17. T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, to appear in Proceedings of the St. Petersburg Mathematical Society. | MR

18. R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. | MR | Zbl

19. S. Howson, Euler characteristics as invariants of Iwasawa modules, Proc. Lond. Math. Soc. 85 (2002), 634-658. | MR | Zbl

20. A. Huber and G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings of the ICM, Vol. II (Beijing, 2002) (2002), 149-162. | MR | Zbl

21. K. Kato, K1 of some non-commutative completed group rings, preprint (2004). | MR | Zbl

22. M. Lazard, Groupes analytiques p-adiques, Publ. Math., Inst. Hautes Étud. Sci. 26 (1965), 389-603. | Numdam | MR | Zbl

23. B. Mazur, Rational points of abelian varieties in towers of number fields, Invent. Math. 18 (1972), 183-266. | MR | Zbl

24. J. C. Mcconnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Math. 30, AMS (1987). | MR | Zbl

25. J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften 323, Springer (2000). | MR | Zbl

26. B. Perrin-Riou, Groupes de Selmer d'une courbe elliptique à multiplication complexe, Compos. Math. 43 (1981), 387-417. | Numdam | Zbl

27. K. Rubin, Themain conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. | Zbl

28. L. Schneps, On the μ-invariant of p-adic L-functions, J. Number Theory 25 (1987), 20-33. | Zbl

29. J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420, Oeuvres II, 264-271. | MR | Zbl

30. J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331, Oeuvres III, 1-73. | Zbl

31. J.-P. Serre, Algèbre Locale, Multiplicités, 3rd ed., LNM 11, Springer (1975). | MR | Zbl

32. J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42 Springer (1977). | MR | Zbl

33. R. Swan, Algebraic K-theory, LNM 76, Springer (1968). | MR | Zbl

34. L. N. Vaserstein, On stabilization for general linear groups over a ring, Math. USSR Sbornik 8 (1969), 383-400. | MR | Zbl

35. L. N. Vaserstein, On the Whitehead Determinant for Semi-local Rings, J. Algebra 283 (2005), 690-699. | MR | Zbl

36. O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. 4 (2002), 271-311. | MR | Zbl

37. O. Venjakob (With An Appendix By D. Vogel), A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math. 559 (2003), 153-191. | MR | Zbl

38. O. Venjakob, Characteristic elements in non-commutative Iwasawa theory, Habilitationschschrift, Heidelberg University (2003).

39. O. Venjakob, Characteristic elements in non-commutative Iwasawa theory, to appear in J. Reine Angew. Math. | MR | Zbl

40. R. I. Yager, On two variable p-adic L-functions, Ann. Math. 115 (1982), 411-449. | MR | Zbl

Cité par Sources :