Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit of geometrically finite kleinian groups, the limit set of is either of Lebesgue measure zero or all of . Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.
@article{PMIHES_2003__98__145_0, author = {Brock, Jeffrey and Bromberg, Kenneth and Evans, Richard and Souto, Juan}, title = {Tameness on the boundary and {Ahlfors'} measure conjecture}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {145--166}, publisher = {Springer}, volume = {98}, year = {2003}, doi = {10.1007/s10240-003-0018-y}, zbl = {1060.30054}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-003-0018-y/} }
TY - JOUR AU - Brock, Jeffrey AU - Bromberg, Kenneth AU - Evans, Richard AU - Souto, Juan TI - Tameness on the boundary and Ahlfors' measure conjecture JO - Publications Mathématiques de l'IHÉS PY - 2003 SP - 145 EP - 166 VL - 98 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-003-0018-y/ DO - 10.1007/s10240-003-0018-y LA - en ID - PMIHES_2003__98__145_0 ER -
%0 Journal Article %A Brock, Jeffrey %A Bromberg, Kenneth %A Evans, Richard %A Souto, Juan %T Tameness on the boundary and Ahlfors' measure conjecture %J Publications Mathématiques de l'IHÉS %D 2003 %P 145-166 %V 98 %I Springer %U http://www.numdam.org/articles/10.1007/s10240-003-0018-y/ %R 10.1007/s10240-003-0018-y %G en %F PMIHES_2003__98__145_0
Brock, Jeffrey; Bromberg, Kenneth; Evans, Richard; Souto, Juan. Tameness on the boundary and Ahlfors' measure conjecture. Publications Mathématiques de l'IHÉS, Tome 98 (2003), pp. 145-166. doi : 10.1007/s10240-003-0018-y. http://www.numdam.org/articles/10.1007/s10240-003-0018-y/
1. Degenerating families of Riemann surfaces, Ann. Math., 105 (1977), 29-44. | MR | Zbl
,2. Finitely generated Kleinian groups, Am. J. Math., 86 (1964), 413-429. | MR | Zbl
,3. Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Natl. Acad. Sci. USA, 55 (1966), 251-254. | MR | Zbl
,4. Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Am. J. Math., 118 (1996), 745-779. | MR | Zbl
and ,5. Cores of hyperbolic 3-manifolds and limits of Kleinian groups II, J. Lond. Math. Soc., 61 (2000), 489-505. | MR | Zbl
and ,6. Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. | MR | Zbl
and ,7. Cobordism of automorphisms of surfaces, Ann. Sci. Éc. Norm. Supér., 16 (1983), 237-270. | Numdam | MR | Zbl
,8. Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), 71-158. | MR | Zbl
,9. Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., 20 (1988), 255-261. | MR | Zbl
and ,10. Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math., 143 (2001), 523-570. | MR | Zbl
,11. Cone Manifolds and the Density Conjecture, To appear in the proceedings of the Warwick conference ‘Kleinian groups and hyperbolic 3-manifolds,' arXiv:mathGT/0210484 (2002). | Zbl
and ,12. On the density of geometrically finite Kleinian groups, Accepted to Acta Math., arXiv:mathGT/0212189 (2002). | MR | Zbl
and ,13. K. Bromberg, Hyperbolic Dehn surgery on geometrically infinite 3-manifolds, Preprint (2000).
14. Rigidity of geometrically finite hyperbolic cone-manifolds, To appear, Geom. Dedicata, arXiv:mathGT/0009149 (2000). | MR | Zbl
,15. Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives, Preprint, arXiv:mathGT/0211401 (2002). | MR | Zbl
,16. Projective structures with degenerate holonomy and the Bers density conjecture, Preprint, arXiv:mathGT/0211402 (2002). | MR
,17. Collars for Kleinian Groups, Duke Math. J., 49 (1982), 163-182. | MR | Zbl
and ,18. Ends of hyperbolic 3-manifolds, J. Am. Math. Soc., 6 (1993), 1-35. | MR | Zbl
,19. Geometrically tame hyperbolic 3-manifolds, In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Symp. Pure Math., pp. 99-109. Am. Math. Soc., 1993. | MR | Zbl
,20. Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pp. 3-92. Cambridge University Press, 1987. | MR | Zbl
, and ,21. On limits of tame hyperbolic 3-manifolds, J. Differ. Geom., 43 (1996), 1-41. | MR | Zbl
and ,22. Geometric complex coordinates for Teichmüller space, In preparation.
and ,23. R. Evans, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness, Ph.D. Thesis, Unversity of Michigan (2000).
24. Tameness persists in weakly type-preserving strong limits, Preprint. | MR | Zbl
.25. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differ. Geom., 48 (1998), 1-59. | MR | Zbl
and ,26. Universal bounds for hyperbolic Dehn surgery, Preprint, arXiv:math.GT/0204345 (2002). | MR | Zbl
and ,27. C. Hodgson and S. Kerckhoff, The shape of hyperbolic Dehn surgery space, In preparation (2002).
28. Non-continuity of the action of the modular group at Bers' boundary of Teichmüller space, Invent. Math., 100 (1990), 25-48. | Zbl
and ,29. On Ahlfors' finiteness theorem, Adv. Math., 76 (1989), 155-169. | Zbl
and ,30. The geometry of finitely generated kleinian groups, Ann. Math., 99 (1974), 383-462. | MR | Zbl
,31. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, In Discrete groups and automorphic functions, Academic Press (1977), pp. 259-293. Academic Press, 1977. | MR
32. On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math., 91 (1970), 607-639. | MR | Zbl
,33. Kleinian Groups, Springer-Verlag, 1988. | MR | Zbl
,34. Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxf., 37 (1986), 299-307. | MR | Zbl
,35. The classification of conformal dynamical systems, In Current Developments in Mathematics, 1995, pp. 323-360. International Press, 1995. | MR | Zbl
,36. Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math Studies 142, Princeton University Press, 1996. | MR | Zbl
,37. Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton University Press, 1972. | Zbl
,38. Kleinian groups which are limits of geometrically finite groups, Preprint. | Zbl
,39. Compact submanifolds of 3-manifolds, J. Lond. Math. Soc., (2) 7 (1973), 246-250. | MR | Zbl
,40. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97, Princeton, 1981. | MR | Zbl
,41. Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243-260. | MR | Zbl
,42. W. P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979.
43. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., 6 (1982), 357-381. | MR | Zbl
,44. Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds, Ann. Math., 124 (1986), 203-246. | MR | Zbl
,45. W. P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, Preprint, arXiv:math.GT/9801045 (1986). | MR
Cité par Sources :