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WHAT IS A MONOTONE LAGRANGIAN
COBORDISM?

François Charette

Abstract. — We explain the notion of Lagrangian cobordism. A flexibil-
ity/rigidity dichotomy is illustrated by considering Lagrangian tori in C2. Towards
the end, we present a recent construction by Cornea and the author [8], of monotone
cobordisms that are not trivial in a suitable sense.

1. Introduction

In this note we explain the notion of Lagrangian cobordism that goes
back to Arnol’d [1, 2]. We pay special attention to a so–called flexibil-
ity/rigidity dichotomy which is illustrated when studying Lagrangian tori
in C2. The relevant definitions will be introduced in §2.
Lagrangian submanifolds play an essential role in the understanding of

symplectic manifolds and it is therefore natural to try to classify them, up to
Hamiltonian isotopy for example. Even for Lagrangians in Cn the complete
classification is unknown. A more attainable goal is to study them up to
Lagrangian cobordism.
If one considers only immersed Lagrangians and cobordisms, the problem

has a flexible nature: it is completely solved in Cn and reduces to the
computation of stable homotopy groups of certain Thom spaces, as shown
by Eliashberg [11]. An account of this and generalization to any symplectic
manifold can be found in the book by Audin [4]. This is briefly discussed
in §3.1 via the Gromov–Lees theorem.
The embedded case behaves in the same way. Indeed, a Lagrangian

surgery trick, see Polterovich [18], performed on self-intersection points of a
Lagrangian immersion yields an embedded cobordism. An explicit example
will be given in §3.2.
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To get purely symplectic phenomena and rigidity results, it is necessary
to restrict the class of embedded cobordisms. As it turns out, the notion of
monotonicity plays a key role and this is the content of §3.3 and 3.4, where
techniques involving J-holomorphic curves enter the picture. This restric-
tion gives some control on the space of holomorphic curves used to define
algebraic invariants such as Lagrangian Floer and quantum homologies.
The last section presents, based on the monotone cobordism category

recently introduced by Biran–Cornea [6, 7], a construction by Charette–
Cornea [8] of monotone cobordisms which are non-trivial in a suitable sense.

2. Notions of symplectic topology

2.1. Classical mechanics and Hamiltonian isotopies

Here, we give the notions which will be useful for this note. For more
context and motivations, the reader can consult the texts by Arnol’d [3],
McDuff–Salamon [17], and Polterovich [19].

A symplectic manifold is a manifold M endowed with a two-form ω ∈
Ω2(M) such that:

• ω is closed, dω = 0
• ω is non-degenerate, i.e. it induces an isomorphism

ι : TM → T ∗M

X 7→ ω(X, ·)

The non degeneracy condition implies that M is even dimensional; we
denote its dimension by 2n. This notion comes from classical mechanics,
where the role of M is played by phase-space, which locally looks like the
set of variables {(qi, pi) i = 1, ..., n}, where qi is the position of a particle
and pi its velocity. The associated symplectic form is ω0 :=

∑
i dqi ∧ dpi.

Examples.
1. The typical example is any open subset of R2n with the form ω0

defined above. We will often identify R2n with Cn, and write ω0 =∑
j dxj ∧ dyj .

2. Any orientable surface Σg with an area form is symplectic.
3. The complex projective space CPn admits a canonical symplectic

structure ωFS defined by restricting ω0 to S2n+1 ⊂ Cn+1 and quo-
tienting by the action of S1 given by complex multiplication.
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4. The cotangent bundle of the interval T ∗[0, 1] with the form dt∧ dy
is symplectic; here t represents the base coordinate and y the fiber.

The last example will be used to define Lagrangian cobordisms.
Given a time dependent function H : [0, 1]×M → R, called a Hamilton-

ian, the Hamiltonian vector field XH
t is uniquely defined by

ω(XH
t , ·) = −dHt(·)

and its associated flow starting at the identity is denoted φHt . On (R2n, ω0),
the flow lines are the solutions of Hamilton’s equations (as a quick check
shows), hence symplectic geometry provides a mathematical framework to
Hamiltonian mechanics.

Definition 2.1. — The group of Hamiltonian diffeomorphisms, or iso-
topies, is

Ham(M,ω) = {φ ∈ Diff(M) | φ = φH1 for some H}

For more on this group, see Polterovich’s book [19].

Example 2.2. — Rotation of the first coordinate in CPn is Hamiltonian:

φt : CPn → CPn

[z0 : z1 : ... : zn] 7→ [e2πitz0 : z1 : ... : zn]
Indeed, computations show that φt preserves the symplectic form, hence
the vector field Xt generated by this isotopy is closed, meaning that
d(ω(Xt, ·)) = 0. SinceH1(CPn;R) = 0, there exists a primitive for ω(Xt, ·).

2.2. Lagrangian submanifolds

Definition 2.3. — Given a closed (i.e. compact without boundary)
manifold L of dimension n = dimM/2, an immersion (respectively embed-
ding) i : L→M is called Lagrangian if i∗ω = 0.

Examples.
1. Any closed curve on a surface is Lagrangian, since a 2-form vanishes

on a one-dimensional space.
2. The real projective space RPn ⊂ (CPn, ωFS) is Lagrangian, by

definition of the symplectic form.
3. Whitney’s immersion of the unit n-sphere is Lagrangian in (Cn, ω0):
w : Sn → Cn, (x0, ..., xn) 7→ (x1, ..., xn, 2x0x1, ..., 2x0xn).
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Immersed Lagrangians were studied by Lees and Gromov, who showed
that they are flexible objects whose behaviour is governed by algebraic
topology.

Theorem 2.4 (Gromov [14], Lees [16]). — Fix L a manifold such that
dimL = dimM/2. There exists a Lagrangian immersion i : L → (M,ω) if
and only if there exists a fiberwise Lagrangian monomorphism F : TL →
TM such that the induced map f : L → M , defined by precomposing
F with the zero section and composing with projection to M , satisfies
[f∗ω] = 0 ∈ H2(L).

An easy example is provided by any parallellizable manifold L of dimen-
sion n, e.g. a Lie group, where F : L×Rn → TM maps each fiber to a fixed
Lagrangian linear subspace of TpM ∼= (R2n, ω0) for some p. Notice that the
induced map f is constant.
On the other hand, embedded Lagrangians exhibit rigidity properties, a

symplectic phenomenon:

Theorem 2.5 ([13]).
• Let L be a closed Lagrangian submanifold of (Cn, ω0), then 0 6=

[ω0] ∈ H2(Cn, L) ∼= H1(L). In particular, L cannot be a n-sphere,
for n > 2.

• There exists a symplectic structure ω on Cn admitting a Lagrangian
embedding of a closed simply connected manifold, for n > 2.

2.3. J-holomorphic curves

The Hermitian product on Cn can be decomposed into a real part and
an imaginary part, where the standard symplectic and complex structures
are intertwined: 〈z1, z2〉 = z1 · z̄2 = ω0(z1, iz2)− iω0(z1, z2).
Gromov’s central idea in [13] was that on a symplectic manifold, in-

tegrability of the complex structure is not necessary, an almost complex
structure is sufficient to obtain symplectic invariants.

Definition 2.6. — An almost complex structure on M is an endomor-
phism J : TM → TM such that J2 = −Id. It is called compatible with
the symplectic structure if ω(·, J ·) defines a Riemannian metric and if ω is
J-invariant, i.e. ω(J ·, J ·) = ω(·, ·). The set of compatible almost complex
structures is denoted by Jω.
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Most rigidity results in symplectic topology use in some way the theory of
J-holomorphic curves: maps from complex surfaces, possibly with bound-
ary, u : (Σ, ∂Σ)→ (M,L) that locally solve the equation ∂xu+ J∂yu = 0.
The left-hand side is usually denoted by ∂̄Ju. Note that the boundary con-
dition involves a Lagrangian in M . The key to proving the first part of
Theorem 2.5 is an existence result for holomorphic discs.

Theorem 2.7 ([13]). — Let L be a closed embedded Lagrangian sub-
manifold of (Cn, ω0). Then for generic J ∈ Jω there exists a non-constant
J-holomorphic disc u : (D2, S1)→ (Cn, L) with boundary on L.

An application of Stoke’s theorem then yields the first part of Theo-
rem 2.5.

3. Lagrangian cobordisms

Lagrangian cobordisms were introduced by Arnol’d [1, 2], although we
will not define them in the same generality.
Given two Lagrangians fi : Li → M, i = 0, 1, possibly immersed, a

Lagrangian cobordism V between them is a smooth cobordism (V ;L0, L1)
with a Lagrangian immersion

i : V → (M × T ∗[0, 1], ω ⊕ dt ∧ dy)

that is cylindrical:

V |M×[0,ε)×R = f0(L0)× [0, ε)× {0}
V |M×(1−ε,1]×R = f1(L1)× (1− ε, 1]× {0}.

The simplest example is the product of a fixed Lagrangian immersion
with a line having endpoints at (0, 0) and (1, 0).

3.1. Flexibility

To illustrate the flexibility of this notion, let us restrict to (M,ω) =
(Cn, ω0). Note that ω0 has a primitive λ =

∑
i xi ∧ dyi, such that dλ = ω,

called the Liouville form.
Following Audin [4], we define a L-regular homotopy of immersions φ : L×

[0, 1]→ Cn to be a family of Lagrangian immersions φt : L→ Cn such that
[φ∗tλ] ∈ H1(L) is constant. This means that φ∗tλ = φ∗0λ+ dgt for a smooth
family of functions gt : L → R. Denote by Xt the associated vector fields

VOLUME 31 (2012-2014)
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defined by d
dtφt. Such a homotopy induces an immersed Lagrangian cobor-

dism, called the suspension (see also §3.4):

Φ: L× [0, 1]→ Cn × T ∗[0, 1]

(x, t) 7→ (φt(x), t, ∂g
∂t

+ λ(Xt)).
(3.1)

The Gromov–Lees theorem also applies to homotopies.

Theorem 3.1 (Gromov [14], Lees [16]). — There is a bijection between
L-regular homotopy classes of Lagrangian immersions f : L→ Cn with tu-
ples consisting of the homotopy class of an isomorphism of complex bundles
f∗Cn ∼= TL⊗ C and the class [f∗λ].

3.2. The Clifford and Chekanov tori

Now let us apply these observations to cobordisms of Lagrangian tori in
C2. The description of the tori and the Lagrangian isotopy between them
is taken from Auroux [5, §5], to which we refer for details.
Consider the map π : C2 → C, (x, y) 7→ xy. Away from (0, 0), π and ω0

on C2 define a horizontal distribution

Hor = 〈v ∈ T (C2) | ω0(v, ·)|ker dπ = 0〉

whose associated parallel transport is symplectic. The fibers of π are iden-
tified with C\{0} except for π−1(0), which is a union of the two complex
lines x = 0 and y = 0. Let S denote the circle |x| = |y| in π−1(1) and γ

denote the unit circle in the base C. Applying parallel transport to S along
γ, one obtains an embedded Lagrangian 2-torus f0 : S1 × S1 → C2 called
the Clifford torus, whose image we denote by TCliff.
Doing the same construction with the circle γ + 2, one obtains another

embedded Lagrangian 2-torus f1 : S1×S1 → C2 called the Chekanov torus,
TChek. A computation shows that [f∗0λ] = [f∗1λ].
Moreover, there is an isotopy through embedded Lagrangians between

these two tori. Indeed, first dilate S in π−1(1) to a circle of radius 1 + ε to
get a torus TCliff

1+ε Lagrangian isotopic to TCliff
1 . Then translate γ to γ + 2

and use parallel transport above this translation to get an isotopy through
Lagrangian tori between TCliff

1+ε and a torus TChek
1+ε . Here it is essential not to

use the circle S in the fiber, as parallel transport would then hit the singular
point (0, 0) where the distribution Hor is not defined. Finally, rescale this
last torus to TChek by shrinking the circle in the fiber.
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The previous discussion shows that the trivializations f∗0TCn ∼= T (S1 ×
S1) ⊗ C ∼= f∗1TCn are homotopic. Since [f∗0λ] = [f∗1λ], the Gromov–Lees
theorem and the suspension construction yield an immersed Lagrangian
cobordism i : S1×S1× [0, 1]→ C2 between the Clifford and the Chekanov
tori, which is an embedding when restricted to a collar neighbourhood of
the boundary.
One can get an embedded Lagrangian cobordism from this by first notic-

ing that there exists a Lagrangian immersion iε homotopic to i in the space
of immersions, such that:

(1) the image of iε is embedded close to the boundary, since the Clifford
and Chekanov tori are embedded;

(2) iε has only finitely many transversal double points of self-inter-
section, away from which it is an embedding.

Performing Lagrangian surgery (see Polterovich [18]) to get rid of dou-
ble points, we get an embedded Lagrangian cobordism between these two
tori, which might not be a product cobordism anymore. Summarizing the
previous discussion, we have:

Proposition 3.2. — There exists a connected embedded Lagrangian
cobordism between the Clifford and the Chekanov tori.

3.3. A rigid invariant of cobordisms

Last section showed that without any restrictions, immersed Lagrangian
cobordisms between embedded Lagrangian submanifolds is a flexible no-
tion governed by algebraic topology via the Gromov–Lees theorem. More-
over, embedded cobordisms are not really restrictive because of Lagrangian
surgery. As it turns out, the class of monotone Lagrangians yields interest-
ing rigidity results. First, we need to define the Maslov index of a disc.
Given a relative homotopy class A ∈ π2(M,L) and a disc representing it

u : (D2, S1)→ (M,L), fix a symplectic trivialization of the pullback bundle
u∗TM ∼= D2× (R2n, ω0) (this exists, since the 2-disc is contractible). Using
this, one gets a loop in L(2n), the set of Lagrangian subspaces of (R2n, ω0),
given by (u|S1)∗TL. As π1(L(2n)) ∼= Z (see e.g. [17, §2.3]), the homotopy
class of this loop is an integer, called the Maslov index of u. In fact, this
integer is independent of the disc representing A and of the trivialization of
the bundle, hence there is a well-defined morphism, also called the Maslov
index

µ : π2(M,L)→ Z.

VOLUME 31 (2012-2014)
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Definition 3.3. — A Lagrangian L ⊂ (M,ω) is monotone if:
(1) There is a constant ρ > 0 such that the two morphisms

ω : π2(M,L)→ R, µ : π2(M,L)→ Z

given respectively by integration of ω and the Maslov index, are
proportional: ω = ρµ;

(2) The positive generator of the image of µ, called the minimal Maslov
number NL, is at least two.

Direct computations show that the Clifford and Chekanov tori are mono-
tone.

Now fix a compatible almost complex structure J ∈ Jω and let

M(NL; J) =
{
u : (D2, S1)→ (M,L)

∣∣ ∂̄Ju = 0 and µ[u] = NL
}

denote the space of J-holomorphic discs with boundary on L and Maslov
class NL.

Proposition 3.4. — Let L be a closed, monotone embedded
Lagrangian. For a generic choice of J ∈ Jω,M(NL; J) is a compact man-
ifold without boundary, of dimension dimL + NL = n + NL. Moreover,
given two generic J0 and J1, there exists a compact cobordism between
M(NL; J0) andM(NL; J1).

The proof relies on Gromov compactness for holomorphic discs, see
Frauenfelder [12] for example.

Remark. — This result is false for non-monotone Lagrangians, although
the dimension formula still holds. An explicit example was hiding in §3.2;
along the isotopy between TCliff

1+ε and TChek
1+ε , consider the torus T obtained

by lifting the circle running through the origin. Then it is possible to show
that the cobordism class ofM(2; J) depends on J .

Assume that NL = 2 and L is monotone. This will be the case for the
Chekanov or Clifford tori for instance. There is an evaluation map

ev : M(2; J)× S1 → L

(u, θ) 7→ u(θ)

The group of biholomorphisms of the 2-disc, denoted by G, has real dimen-
sion 3 and acts freely on the domain of ev via g · (u, θ) = (u ◦ g, g−1(θ)).
Moreover, ev is obviously invariant under this action, hence there is an
induced map:

ev : M(2; J)× S1/G → L
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between two compact n-dimensional manifolds without boundary. Denote
the mod 2 degree of this map by d(J ;L); it represents the algebraic number,
modulo 2, of J-holomorphic discs of Maslov index two going through a
generic point of L. By Proposition 3.4, this degree is independent of J ,
since cobordant maps have the same degree, denoted by m0(L).

Example. — The invariant m0(L) is not easy to compute in general,
but one can check that m0(TChek) = 1 and m0(TCliff) = 0. See Chekanov–
Schlenk [10] for details.

Theorem 3.5 (Chekanov [9]). — Let V be a connected, monotone em-
bedded Lagrangian cobordism between two monotone Lagrangians L0 and
L1. Then m0(L0) = m0(L1).

Corollary 3.6. — The Chekanov and Clifford tori are not monotone
cobordant.

3.4. Lagrangian suspension and non trivial cobordisms

Chekanov’s result was the first instance of rigidity for cobordisms. Re-
cently, Biran and Cornea [6, 7] gave strong rigidity properties involving
not only holomorphic discs, but also the triangulated structure of the de-
rived Fukaya category, which is an invariant related to Lagrangian Floer
homology.
To apply their results, it is therefore important to have non trivial ex-

amples of monotone cobordisms. At the moment, there are essentially two
approaches to this problem. The first one is Lagrangian surgery applied
to pairs of Lagrangians intersecting transversally, as noticed by Biran and
Cornea.
In this section we explain the second approach, which is related to La-

grangian suspension and is due to Cornea and the author [8].
From here on, it is convenient to use the language of category the-

ory, taken from [6]. Let Cob(M) denote the category whose objects are
ordered families of closed embedded monotone Lagrangians of M . Given
two such objects L0 and L1, the space of morphisms between them is the
set MorM (L0, L1) of all monotone Lagrangian cobordisms with boundary
L0
∐
L1, modulo Hamiltonian isotopies of M × T ∗[0, 1] that are constant

close to the boundary of T ∗[0, 1].
Given a Hamiltonian isotopy, {φt}t∈[0,1], φt ∈ Ham(M), its Hamiltonian

functions {Ht} and a monotone Lagrangian submanifold L, the suspension
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of L by φt is the morphism Σ(φt)(L) : φ0(L)→ φ1(L) given by:

Σ(φt)(L) : L× [0, 1]→M × T ∗[0, 1]
(x, t) 7→ (φt(x), t,Ht(φt(x)))

Compare with Equation (3.1). Although these cobordisms are diffeomor-
phic to products, they might not be Hamiltonian isotopic to Σ(Id)(L).

Example. — Recall from Example 2.2 that rotating the first coordinate
in CPn is Hamiltonian. Consider the following family of rotations φkt , each
satisfying φk1(RPn) = RPn:

φkt : CPn → CPn

[z0 : z1 : ... : zn] 7→ [ekπitz0 : z1 : ... : zn]

They yield a family of suspension morphisms Vk = Σ(φkt )(RPn) : RPn →
RPn.

Theorem 3.7 (Charette–Cornea [8], Corollary C). — The monoid
MorCPn(RPn,RPn) contains an element u such that {1, u, u2, ..., un} are
pairwise distinct, where uk is represented by the cobordism Vk.

The proof of this result relies on the fact that the paths φkt , k = 0, 1, ..., n,
represent n different homotopy classes (rel. endpoints) of paths in
Ham(CPn); this in turn uses computations of so-called Lagrangian Sei-
del elements in Floer homology due to Hyvrier [15]. Finally, the tricky part
of the proof relates suspension cobordisms to these Seidel elements.
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