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Some consequences of the cyclic exchangeability
property for exponential functionals of Lévy

processes.
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Abstract In this paper we derive some distributional properties of Levy processes and bridges from

their cyclic exchangeability property. We first describe the 03C3-field which is invariant under the cyclic
transformations. Then, by conditioning on this a-field, we obtain some information about the laws of

many functionals of Levy processes and bridges, such as exponential functionals, quantiles and local

time.
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1 Introduction

The original motivation of the present work was to give a simple explanation of the

following property satisfied by the Brownian bridge (bu, 0  u  I):

for every a E IR, IE (eap(abu) -I = 1. (1.1)
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Throughout the sequel, we will use the notation, fo du exp(abu) . The puzzling
fact that the expectation of the variable I~ 1 does not depend on a has been noticed in

[10], and the same authors explained this fact in [11] using an elementary decomposi-
tion of Brownian bridges.

One of our purposes is to show that the identity (1.1) is actually a direct consequence
of the cyclic exchangeability property of the Brownian bridge. Therefore (1.1) is still

valid for any process satisfying this property, including in particular, Levy bridges.
For every u E [0,1], we denote by 8u the transformation which consists in splitting

the path of b at time u, and then re-ordering the two parts so obtained:

bu, 0  t  1) , (1.2)

where, here and in the sequel, (mod 1). It is well known and elementary to

prove that:

~~~ b. (1.3)

In section 4, we show that the identity in law (1.3) applied at any time u in [0,1],
replacing b by any Levy bridge X~6~, leads straightforwardly to the identity (1.1). More
precisely, by focussing on the description of the invariant 03C3-field associated with the

transformations [0,1], we obtain some nice properties of functionals such as:

fo du the quantiles, (see (4.12) below for their definition), and the local
time process of X~6~ . In section 3, we recall the necessary and sufficient conditions

under which Levy bridges may be defined and admit local times.

In section 4, we also establish some similar results for any process on [0,1], with

cyclic exchangeable increments. Indeed, in [10] and [11], the following identity for
Brownian bridge was also obtained,

f or every 03B1, y ~ IR2, IE I o du (exp(abu + I = ey y -1 . (1.4)

If B is the standard Brownian motion, then by writing the left hand side of (1.4) as

IE ( 10du(exp(03B1(Bu-uB1+uB1 03B1)))-1 |B1 = y] ,

we guessed that the arguments used for the Brownian bridge had an adequate extension

for Brownian motion, and so, for any process with cyclic exchangeable increments.

Apart from giving a simple derivation of (1.1) and (1.4), one of the aims of this

paper is to gather a number of already known consequences of the cyclic exchangeability
property. These are found in the following section.
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2 A characterization of processes with cyclic ex-

changeable increments.

Let D([0, 1]) be the space of càdlàg functions on [0, 1] endowed with the Skohorod
topology and the associated Borel 03C3-field F. Define the transformations [0, I],
acting on any function f of D([0,1]) by

0398u(f)tdef{f(0)+f(t+u)-f(u), if t1-u (2.1)
f(t-(1-u))+f(1)-f(u) if 1-u~t~1.

This transformation consists in splitting the path f at time u and then in re-ordering
the two parts so obtained, so that 0~, ( f ) (0) = f(O) and Ou ( f ) ( 1 ) = f ( 1 ) . A real valued
stochastic process X defined on the space D([0,1]), with law IP is said to be a CEI

process (i.e. a stochastic process with cyclic exchangeable increments) if

for every u E ~0, l~, {~~ X, P - a.s. (2.2)

In particular, any Levy process on the time interval [0,1] is a CEI process (see the
following section). But more generally, for any stochastic process Y defined on D([0,1]),
if U is a uniformly distributed random variable on [0,1], independent of Y, then the
process 8u (Y) is CEI.

The family of transformations (Ou : u E [0,1]) is a group for the composition
product and

for every u, v E [0,1], = 
. (2.3)

The cyclic exchangeability property is weaker than the exchangeability property dis-
cussed by Kallenberg [14] who also defines a. group of transformations. In his paper,

Kallenberg gives a generic decomposition of exchangeable processes on [0,1], whereas
Aldous [I], p.104 raises the following question (in discreteu time): given a sub-group
of transformations, characterize the processes whose law is invariant by this subgroup.
In this section we give an answer to the above question for cyclic exchange in continu-
ous time. We point out that the following results can easily be adapted to discrete time.

Let Z be the 03C3-field, invariant by the transformations (0398u : u E [0,1]), that is:

for every u E ~0,1J, h E Z, if and only if ~r = llr IP - a.s. (2.4)

The law IP of a CEI process being given on the space D(~0, 1]), we first state some
crucial properties of the 03C3-field Z.
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Proposition 1 The following statements are equivalent:

(i) F E L1(IP) is I-measurable.
(ii)

F = du F o eu , P - a.s. (2.5)

(iii)
P - a.s., F = F o for every u E ~0,1~ . (2.6)

(iv) There exists u E (0,1~ ~ 4~ such that

P - a.s., F = F o . (2.7)

Consequently, for any F E L1 (P)

IE[F|I] = 10 dcF o eu, , IP-a.s. (2.8)

Proof The equivalences between (i), (ii) and (iii) follow from (2.3) and (2.4) and are
not hard to check. It also is obvious that (i) implies (iv).

For s E ~0, l~, we denote by ~S the ~-field invariant by the transformation OS, that
is,

r E ZS, if and only if Ir = ~r P - a.s. (2.9)

To prove that (iv) implies (i), first observe that from (2.3), we have: Zu c .

Now, let F be a continuous functional on C([0, 1]), which is ~n~II{nu}-measurable
and let v E ~0, l~. Since the map s H OS is continuous on C(~0, l~), and the set

({rcu} : n E IN) is dense in [0, 1] then F o Ov can be obtained as the limit of a sequence
F o i E IN, so F o Ov = F, a.s. It follows that ~n~INI{nu} C Iv, and then

~n~INI{nu} C . 0

Remark 1

1 _ Note the different positions of ’ P - a.s. in (2.4) and (2.6) .
2- In Proposition 1 the equivalence between (iv) and the other statements can also be

proved by using the well known fact that the transformation x H ~x+u}, (u E ~0,1~,~)
defined on the space ~0, l~, endowed with the Lebesgue measure and the Borel ~ field, is

ergodic.
3- The expression (2.8) is a particular case of (.~.1) in j91, where the authors obtain
a general expression for the conditional expectation given the invariant a-field by the
action of a group on a group of transformations.

We will now focus on a case for which the description of Z~ is particularly explicit.
Consider a CEI process X and construct from it the process

Xo def Xt - Xo - t(Xl - Xo~ ~ t ~ ~ ~ , (2.10)
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which starts from 0 and return to it at time l. One easily checks that X° is also a
CEI process. We will denote by Z° the invariant a-field defined in the sense of (2.4),
relatively to X°. In the sequel we restrict ourselves to the CEI processes such that X°
almost surely reaches its minimum over [0,1] at a unique time ~n. That is

m def inf {t : X0t 11 X° - inf X°} . (2.11)

is almost surely the only time such that X° = Xo.
The 03C3-fields Z° and I may be explicited as in the following theorem.

Theorem 1 Let X be a CEI process and suppose that X°, defined in (2.10), almost
surely reaches its minimum over [0, 1] at a unique time m.
(i) (M. Malric) The invariant 03C3-field I0 associated to X ° may be described as follows :

Z° _ ~f Cm(X°)~, (2.12)

where is the 03C3-field generated by the process Om(X°). . Moreover, any Z°-
invariant functional F is such that F(XO) = F(Om(X°)).
(ii) The invariant 03C3-field I is generated by Z°, Xo and Xl, that is:

I = Z° V 
, (2.13)

where X1} is the 03C3-field generated by the couple of variables (Xo, Xl).
(iii) The random time m is uniformly distributed and independent of Z.

Proof (i) Let F be I0-measurable. From (2.6) we have F(XO) = F o OT(X°), P-a.s.,
for every random time T distributed in ~0,1~. This relation is true in particular for the
time m, which proves that F(X°) = and then Z° c 

Now observe that (2.3) extends to any random time T distributed in ~0,1~, as follows,

~T ° , P - a.s., for every u E ~0, l~.

But a particular property of the time m, which is the crucial point of the proof, is that,
for every u E [0, 1],

~m o Ou + u~ = m, P - a.s. (2.14)
The above identity is easy to check, once we notice that = Ou (X)°, for any
u E [0, l~. So, we obtain,

Om o = 0,~(X°) , P - a.s., for every u E (0,1~.

This proves that Om is an I0-measurable functional and C I0.

(ii) It suffices to observe that = V 03C3{X0, X1} and C I.
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(iii) Applying Proposition 1 and using (2.14), we get that for every bounded measurable
functional F,

i

Z~ - ° du F(m o Ou) )
m 1

- / / 0 m

= 10 ds F(s) .

Remark 2 When X ° is the Brownian bridge, 0398m applied to X0 is nothing but the well
known Vervaat’s transformation [18]. The process Om(X°) is then a normatized Brow-
nian excursion. In that case, it was proved by Biane [5] that the latter is independent
of time m.

We end this section with an application of Proposition 1 to the time A° that a CEI

process X such that X° = Xl = 0 spends below level 0, that is

A° def _o} . (2.15 B )
0 

-

It has been proved by Knight ~15~ that for a process X with exchangeable increments,
the time A° is uniformly distributed over ~0,1~ if and only if the sojourn function of X
is continuous. We also know from (7~, that moreover A° is independent of the invariant
03C3-field Z, (see also [5] for the brownian case) . Here, we show that these results are also
properties of CEI processes and are straightforward consequences of Proposition l.

Proposition 2 Let X be a CEI process such that X° = Xl = 0 and introduce its

sojourn function F(x) = fo x E IR,.

The random time A° is uniformly distributed over [0, 1] if only 2f F is 
uous. In that case, A° is independent o f Z.

Proof First recall the following crucial argument which we pick up in the proof
of Theorem 5 in (7~: Let u be a uniformly distributed random variable over (o,l~,
independent of X, then it is easy to check that that F is the distribution function

of the r.v. Xu. It is known that F(Xu) is uniformly distributed if and only if
F is continuous. Therefore, under this condition, F(Xu) is independent of the whole
process X and moreover, applying Proposition 1, we obtain that for every bounded

measurable function G.
1

IE(G(A°) ~ ~~ = £ du G(A° o Ou)
= 1 

i 

duG ( 1 
i 

ds = duG ds 1I{xs~Xu}
_ IE[G o F(Xu) ]

1

= / dh G(h) ; ;0

where the last identity holds if and only if F is continuous. D
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Remark 3 If X is the Brownian bridge and more generally, any Levy bridge which
admits local times (see the next section for conditions under which it holds), then the
identity

10duG (10ds{Xx~Xu} = 10dh G(h)

can be proved by applying the occupation time density formula. We refer to 
Exercice 1.~1 p. ~~~, and Nasyrov ~16~.

3 Levy processes and bridges are CEI.

Any Levy process (i.e. a process with stationary and independent increments) is CEI
and the same is true for Levy bridges whenever they can be defined. Therefore, all the
results of the previous section are still valid for Levy processes and bridges.

In this section, without any further assumption, (Xt , 0  t  1) is a real Levy
process starting at 0. As we already noticed, the process (Xt - tX1, 0  t  1)
defined in (2.10) is CEI but its law is not equal in general, to the law of the Levy
bridge (see the definition (3.2) below). Actually, Brownian motion with drift times a
constant is the only Levy process such that the laws of X° and the bridge coincide, see
[15], Theorem 2.2.

The definition of the Levy bridge requires the following additional assumption:

(HI) The probability transitions IP(Xt E dy | X0 = x) are absolutely
continuous with respect to the Lebesgue measure dy.

We denote the above densities by pt(y - x), that is

IP(Xt E dy ~ Xo = x) def - x) dy , x, y E IR. (3.1)

Condition (HI) is equivalent to the fact that the semigroup of X fulfills the strong
Feller property, (see for instance [3], Proposition 3). Suppose moreover that X is not
a subordinator. Then Lemma 2.10 in [12] asserts that pt(0) > 0 for all t and the Levy
bridge associated with X is the process with law defined by:

IE[F(X(b)u, 0 ~ u ~ t)] def IE[F(Xu, 0  u  
, ( 3.2 )

for every t  1, and every bounded measurable functional F. One will find a general
discussion about the definition of bridges for Markov processes in [13]. Intuitively, X~6~
corresponds to the process X conditioned to return to 0 at time 1. There are many
instances of Levy processes where this last definition has a rigorous meaning. The case
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of stable Levy processes is described in Bertoin [2], ch. VIII.3.

Some applications in the next section concern the local times of X~b~. Its existence

requires the following further assumption: When

(H2) 0 is regular for itself for the Lévy process X, ,

it makes sense to define the occupation local time of X. We refer to Bertoin [2], ch.
11.5 for necessary and sufficient conditions under which (H2) holds, and to ch. V of the
same book for the definition of the occupation local time. Suppose moreover that (Hl)
holds, then in a natural way, one may define the occupation local time of the bridge
X(b). In the following, this local time will be considered only at time 1. We will denote

this process by E IR, when no confusion is possible. It is formally defined by the

occupation time density formula:

10f(X(b)s) ds = IRf(x) lx dx , (3.3)

where f is any bounded measurable function, see [2], ch. V. Note also that from [2],
Proposition V.2, one has for every x E IR,

l~ " f du IP-a.s. (3.4)

4 Applications.
This section is mainly devoted to the study of the law of the functional

A03B1 def exp(03B1Xu), (4.1)

conditionally on Z, for some CEI processes. With no loss of generallity and for conve-

nience reason in the satement of the next results, we may suppose that Xo = 0, a.s.

First, note that without any particular assumption on the process X, we have for every
u E [0, 1],

A. o + 1) ds , (4.2)

thus, from Proposition 1,

IE[A-103B1|I ] = 10 due03B1Xu 
A03B1 + (e03B1X1-1) u0 dhe03B1Xh

= 03B1X1 e03B1X1-1(X1~0) + (X1=0). (4.3)

This direct application of Proposition 1 yields a reinforcement of identities (1.1) and

(1.4) mentioned in the introduction. In the next proposition, we extend formula (4.3)
to obtain a recurrence formula bearing upon the conditional Mellin transform of .4a.
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Theorem 2 For every real v,

IE (Awo A-(03BD+1)03B1 l I) = (e03BD03B1X1 -1 03BD(e03B1X1-1) flx,#o> + flxi=o» IE[A-03BD03B1 | I]. (4.4)

More generally, for every bounded, measurable function p,

IE[A-103B1 £ (e03B1Xu A03B1) |I]
= 03B1 (e03B1X1-1) X10dy IE [03C6(e03B1y A03B1) I I) flxi #o> + IE (w (£) I I) flxi=o> . (4.5)

Proof. From (4.2), we have,

o eu = (Aa + (e°~~ - l) ) ~~~~~ . .
Using the fact that Xu = (Xi - X1-u) o 0398u, we obtain that for every bounded I-
measurable functional F,

gg [ ~g ~-(v+I)]
= Ill i F + (e03B1X1 - 1 ) u0 ds e03B1Xs ) -(V+I) I .

Integrating with respect to u over [0,1] , gives

IE (F 
= IE [F110 du e03B1Xu (A03B1 + (e03B1X1 - l) u0dse03B1Xs)-(03BD+1)] .

But noticing that,

- d (Aa + (e" ~ ~ - l) / u ds e°~~ ) 
-v

du 
A03B1 + (e03B1X1 - 1) o ds e03B1Xs

( u 
-(V+I)

= - (Aa + (e°~~ - l) / o ) ,

allows us to conclude,

IE [Fe-03BD03B1X1A03BD03B1 A-(03BD+1)03B1] = IE [F(1-e-03BD03B1X1 03BD(e03B1X1- 1) (X1~0) 
+ (X1=0)) A-03BD03B1].

The second statement follows from (4.4) by uniqueness of Mellin transforms. D

Throughout the rest of the paper we will deal with the Lévy bridge. So, suppose
that the Lévy process X is not a subordinator and verifies hypotheses (Hl) and (H2) of
the previous section. From X, construct a bridge X(b) on the canonical space D([0, 1]) ,
whose law is defined by (3.2) . We will refer to I as the invariant 03C3-field defined in (2.4)
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with respect to X(b). Let also = o- ~ IR) be the 03C3-field generated by the local
time process defined in (3.3) and (3.4). This a-field is equivalently generated by the
variables F = where the functions f are in then, for every
~ ~ [0,1], F o 0~ X~)), so the variables,

10 du F o 0398u = 10 du 10 dh f(X(b)h - X(b)u) (4.6)

are I-measurable. These variables are actually m I-measurable. Indeed, by the

occupation time density formula,

/" du /’ ~’) = .

o ~0 

This last equality actually defines the intersection local time (~ ,~ 6 IR), and can be

expressed as :

/" du /’ dh ~) = ~, ,
70 ~0 ~-00

so that we can state

Proposition 3 For every x ~ IR,

.

Among the £-measurable functionals, we consider some of particular interest, e.g: those

whose conditional law upon I have a nice expression.

(a) The first example is closely connected with Taking = in (4.6), we

get that the variables are I-measurable and; == More generally,
for every o;i,..., an, /~i,..., /~ ~ IR, we have

° (4.7)

Now, set

(4.8)
def 10 du X(b)u, if 03B1=0.

(Note that L03B1 ~ Lo, as a - 0, P - a.s.) By taking n = 2, Q;i = a, 03B21 = I/a, 03B12 = 03B2,
~2 = -1/~ in (4.7), we obtain that for every ~ IR, such that 0, the variables,

L. - ~ , , (4.9)

are I-measurable. This property can be justified more directly by noticing that,

] = L.- (4.10)
= L03B1 - L0.
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We emphasize that the functionals L~ play some natural role in the study of the
asymptotic windings of planar Brownian motion. We refer to [17], Exercice (1.18),
chap. I, p.23 and [6] where there is a discussion concerning Z~ for Brownian motion.

The above results on Z~ can be reinforced by the following proposition:

Proposition 4 The conditional law of L03B1 given Z satisfies,

(4.11)

Proof This is a straightforward consequence of the relation

4) !T] 7. - X~), ,

for every bounded measurable functional /, which follows from (2.8) and the occupa-
tion time density formula. D

(b) The second example concerns the quantiles of the bridge which present some
intriguing analogies with Le,. For o; ~ [0,1], the 03B1-quantile of is the level under
which the process spends a time equal to a; it formally can be defined as follows:

. (4.12)

Since ~ f-~ Me, is the inverse of the function ~ ~ J~ ~~ , 
then it is ~-measurable.

Moreover, we easily check from (2.8) in Proposition 1, the analogue for of formula

(4.10),

(4.13)

By the same token as in (4.9), for every o~ ~ [0,1], the variables

~3 (4.14)

are I-measurable and we prove the following proposition by the same arguments as
those used in the proof of Proposition 4.

Proposition 5 conditional law o/ M03B1 given T 

IP(M. e = ~~-~ ~ ?/ e IR. (4.15)

A simple consequence of (4.15) is that:

T]=l, (4.16)

which may be seen as the counterpart of (4.3) applied to X~. But (4.16) is also

explained by the identity: > 0} = {.4~  a}, and the fact that ~ is uniform and
independent of I, see Proposition 2.
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We note that the quantiles of a Levy bridge have already been studied under this

aspect in [7]. We also refer to [19], [8] and [4] for results about their laws.
The functionals La and Ma allow us to obtain several descriptions of the a-field

I n £, as the next proposition shows. First recall that under hypothesis (Hl), the Levy
bridge X(b) reaches its minimum at almost surely one time, .(defined in (2.11). For

convenience reasons, set ~ = 0398m(X(b)), then we have

Proposition 6 Let ~C(~) be the a-field generated by the local time process of E, then
the a-fields In ,C, ,C(~), , a E IR) and a E IR) are the same.

Proof From Proposition 1 and Theorem 1 (i), it is easy to see the equality between
and Indeed, we have for every measurable bounded functional F,

IE(F(lx, x ~ IR)|I) = 10 duF(lx-X(b)u, x ~ IR)

= 10 du F(lx-~u(~), x ~ IR)
,

where (lx(~), x E IR) is the local time process of E.
On the other hand, it is clear that the processes (lLa a E IR) and , a E IR)

are Z-measurable. Moreover, if La: (E) and are defined by

L03B1(~) def 03B1-1 log 10 dh exp(03B1~h)M03B1(~) def inf {x : 10 dh (~h~x) = 03B1}

then again, from Theorem 1 (i), we have

, a E IR) _ (~) , a E IR)
, ~ E IR) .

Finally, we easily check that the a-fields generated by (~) a E IR), (~) a E
IR) and (l:, x E IR) are the same, which proves the equality between ,C(~), E

IR) and , a E IR). D

The analogy between (La, a E IR) and (Ma, a E [0,1]) is reinforced by the following
remark: denote by S the supremum over [0,1] of the Levy bridge X~b), then S is an
extremal value of both the processes (La, a E IR) and (Ma, a E [0,1]), in the sense
that almost surely,

S - lim La (4.17)’ ’

- lim M03B1 (= M1). (4.18)
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The same equalities hold for the infimum over [0,1] of X(b) by letting a respectively go
to -oo and 0. In particular, from either Proposition 4 or 5, we get

IP(S ~ dy|I) = dylS-y, y ~ IR.

And from this last equality, we recover the following result which, at least in the

Brownian case, was already a consequence of Vervaat’s transformation:

~ == ~ ,
where U is an uniformly distributed random variable independent of c.

In [7], the process (Ma, a E [0,1]) is involved in an extension of Vervaat’s transfor-
mation. The above analogies between La and MQ raise the question of the existence
of such an extension involving La.
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