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Some remarks on L*°, H*® and BMO

Peter Grandits

1 Introduction

In (1] C. Dellacherie, P.A. Meyer and M. Yor proved that L* is neither closed nor
dense in BMO, except in trivial cases (i.e. if the underlying filtration is constant).
The same is true for H* (c.f. [3] section 2.6 and [5]). So one may ask, whether it is
possible to find a martingale X € BMO, which has a best approximation in L* resp.
in H®, i.e.

ziét}‘fw |X - Zllgmo = X - Z”BMO for some Z € L*®

resp. ) )
ziergw |1X = Z|lamo = ||X — Z||smo for some Z € H™.

It is easy to see that this is equivalent to the question: does there exist a martingale
X € BMO s.t.

AR NIX = Zllsmo = || X||smo

resp.

A, I1X = Zllsmo = || X||amo-

holds? R. Durrett poses this problem for L in [2], p. 214, and he conjectures a
solution for X. We show in this paper that a discrete time analogue of Durrett’s
example works, but in continuous time it does not. In the case of H* we provide a
class of processes (including Durrett’s example), for which Z = 0 is indeed the best
approximation in H*. Note that for the negative result in L we work with the norm
Il - l|BMo, » as the problem was posed by Durrett in this way. For the positive result
in H® we use || - || smo,, which seems to be more natural in this case.

2 Notations and Preliminaries
We denote by BMO the space of continuous martingales X on a given stochastic

basis (2, F, (F:)i20, P), satisfying the "usual conditions” of completeness and right
continuity, for which the the following equivalent norms are finite

1 Xlamo, = Sl;-p{”E"Xw = Xr||Fr)lleo} = - { (E[II’)[(;;of]T”)}
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o

IXllaao, = sup{llEl(Xeo ~ X7} Fr)7 ||} = sup { (_E[(Xoo - Xr)zl)

P[T < 0] } -
SUp {1 EL(X )0 = (X)7|F 1 [l }.

Here T runs through all stopping times. In the present context H® denotes the space
of continuous martingales M on (Q, F,(F,)2,, P) s.t.
1
[|M||ge = ess sup (M)& < oo

holds. We also use the following standard notation. If M is a martingale and T a
stopping time, we denote by M7 the martingale stopped at time T, i.e.

MgT = MtAT
and by TM the martingale started at time 7, i.e.
™ =M-M".

The next easy lemma is maybe folklore, but for the convenience of the reader we
provide a proof.

Lemma 2.1 Let X be in BMO and R an arbitrary stopping time. Then we have

1®X|18mo; < 11X |lBMO,-

Proof: We prove that || [ HdX||smo, < ||X||Bamo,, if H is previsible with |H| <1,
which immediately implies the assertion of the lemma.

I | HdXllbuo, = sup{IIEL [ HaX)uw ~ ([ HdX)rlFr)ll} =

supI1EL [ B2d(X)\Frlle} < sup{lIEL [ dX)|Frlll) =
sup{IE[(X)o — (X1l Frlll} = XIpo, O

3 The case L™ - a discrete time example

We give in this section an example of a discrete-time process, for which Z = 0 is indeed
the best approximation in L*, if we use the space bmo, (c.f. [4]) as an analogue to
BMO, in the continuous-time setting. Let (W,)2, be a standard random walk on
(@, F, (Fa)ilo, P) with natural filtration, i.e. P[{AW, = 1}] = P[{AW, = -1} =1
and Wy = 0. Let T be the stopping time T = inf{n|AW, = —~1}, and B, =
W,';" = Wran. This is a discrete-time analogue of the continuous martingale, which
we consider in section 4, and which was suggested by Durrett in [2].

Denoting the bmo;-norm by || - ||., an easy calculation gives

I Bll. = sup | E(|Boo — Bsl|Fs]lleo = sup || E[|Bs — Bs||Bs = kl||oo =
S k€No

IE(1Bos — Bsl|Bs = 0]llec = E[|Bool] = 3 |r[270+D =1,

r=-1
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where the supremum is taken over all stopping times S and N, denotes the set
{0,1,2,...}. We denote by L®(Q,F,(F,)2,, P) the space of all bounded martin-
gales with respect to the given filtration. Our claim is

Proposition 3.1
inf ||B-Z|.=1,
ZeL=

i.e. Z =0 is the best approzimation in L*® of B.

Proof: We shall show that assuming the existence of a Z € L, which fulfills || B —
Z||. = a < 1, leads to a contradiction.

As the definition of the bmo,-norm is invariant with respect to an additive constant,
we assume that Z > 0 holds. Furthermore the function f(t) = ||B — tZ|. is a
continuous convex function with f(0) = 1 and f(1) = . Therefore we may assume
w.lo.g. that || Z]| < § holds, and we remain with

Zeo = G on Cy for k = -1,0,1, ...,
where 1
OSakSZ (1)

holds, and the atoms C} are defined by Cy = {Bs = k}. Since the filtration is given
by
fn = {C-],CO, ...,Cn_z, (C,._l U Cn U )} n= 0, 1,2, very

and P[Ci] = 2-(+?) one can easily calculate Z, = ElZo|Fpa] forn =0,1,2,....

Z, = ag on Cy for k= -1,0,1,....,.n — 2

Zn= ). a, 270421 = o on (Croy UC, UL

r=n-1
Hence we get for n =0,1,2,...
Boe—Bn=Z°°—Zn=0 OnC_IUCQU...UC_g,
resp.
Bo,—-B,=s—-n onC,fors=n-1,n,n+1,...

and
Zoo — Lin = Qg — Yn_1 onC,fors=n—-1,n,n+1,...

As the supremum over all stopping times in the definition of the bmo;-norm can be
replaced by a supremum over all fixed times n, we calculate E(|Bo— Bn— Zeo + Zn || Fal],
which is 0 on C_,,Cy,...,Cn_2 and

0
Z |s ) + 7n—-1!2_(,+2)

s=-1

on Cn—l U C,.U,
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Using eq. (1) and our assumption ||B — Z||. = a < 1. we conclude that

oo

l s
(an—l - Tn- ) +lan Tn- I‘ é’ Z —Qnys + Y- I) ~(s+2) < 4 =a—1

has to hold for n = 0,1,2..... We now distinguish two cases.
Case |: —an + Yn-1 20
A simple calculation gives

An-1 S Tn-1 — P

Case 2: —an + Yn-1 <0
In this case we get —y,-1 + %an_l + %an < ——p This inequality and our assumption
in case 2 allow us to conclude that a,_, < a, has to hold, and we finally get

2
an-y < Yp-1 — §p
Denoting now o = %p > 0, we can combine case 1 and case 2, which yields
—an-1+ V1> 0 n=20,1,2,..

or

- %a,‘_, + 5 a 27 5 o n=0,1,2,... (2)

Defining A = sup,—_; o as, implies the existence of an M, s.t. ayy > A — o, and we
infer that
__aM + Z a2 =M+ o 7
s=M+1 2
holds, which is a contradiction to eq. (2). 0

4 The case L™ - a continuous time example

In contrast to the discrete case it seems to be not so easy to find a martingale in
BMO in continuous time, which has a best approximation Z = 0 in L. It is shown
in this section that the - in some sense - natural guess of Durrett [2] of a martingale,
which is quasi-stationary, in a sense to be defined later, does not work. However, it
will be shown in section 5 that this quasistationarity is sufficient to guarantee a best
approximation Z = 0 in H®.

Let (W), be a standard Brownian motion on (Q, F, (F:)2q, P). As in [2] we
define Ry =0, R, = inf{t > Rney : |Wy = Wg, _,| > 1}, N=inf{n: Wg, — Wg,_, =
—1} and finally X; = Wiary. The following formula is valid for a € (—1,1) (c.f. [2],p
208)

I1Xllsso, = sup NE[ X — X1l|Fr]lleo = Sup E(|Xeo — X7l|XT = 0] =
a€(-1,1
(a+1)(2-a) 9

1 1 a2 1 —_—— = .
uES(lip (-1.0)(a)( a®) + 1o, 1(a) 2 8

Our claim is now
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Proposition 4.1

. 9
Zle’},fm ”X - Z”BMOI < g’

where L® = L*(Q, F, F, P) is the space of continuous bounded martingales.

This answers negatively the question posed by Durrett in Ex. 1 of sect. 7.7 in (2).
Proof: In order to prove the proposition some further notation is needed. We define

Ar={w:Xs=r} r=-1,0,1,...

Sp=inf{t>Ro_y : Xy — Xg,_, = %} n=123,..,

where we use the convention inf § = co. Furthermore we need

.Ag = A,- n {S,-+2 = CX)}
A9 = AN {Sp2< ), r=—1,0,1,..

and finally
M = 0 R‘n—l S t< Sﬂ
¢ 1 S, <t<R,, n=1,23,..

The process M indicates, whether X has reached the value Xg,_, + 1 in the stochastic
interval [[Rn_1, Rn[[ or not, and is essential for the calculation of the conditional
expectations occurring in the sequel.

A straightforward but lengthy application of the optional stopping theorem yields
the following table of conditional probabilities, which we will need later on.

r=0,1,2,.. —1<a§% %<a<1
P[A® || X1 = a, M7] =R(1-Mr) 0
P[AL,|XT = a, Mr] || 21(1 — Mr) + =2Mr i=s
P[AY| X7 = a, M7) La 1 La L
P[A?| X7 = a, Mr] Le Lo

We define now a bounded continuous martingale Z, which gives a better approxima-
tion of X than the trivial approximation Z = 0:

Zoo = 61u:—l Ab
Z = E[Z,|F]
with 6§ > 0. This yields
ZT = 6P[SN = OOI]:T]

Again it suffices to consider a € (—1,1). Since ||Z]|gpmo, < 6 holds, we only have to
show that

a+1)(2—-a
E{|Xeo — X1 = Zoo + Zrl| X1 = a, Mg] < E[|Xo0 — Xg||Xp = o] = @+ 1DC—0)

holds for a € [%, %] uniformly in M7, and then to choose § small enough.
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Using again the optional stopping theorem, an easy calculation gives the following
table.

Zr
r=-10,1,..0| X | X7 | Z0 -1<a<3 3<a<l1
Ab r a | 6 5(2—;—5(1 - M7) + g-;:f;-lx\/f'r) 5%}&
A r a |0 " ”
Putting things together we arrive - after a lot of algebra - at
E[lXoo — X1 -2, + ZT”XT = a,MT] =
i“—ﬂ)éz—ﬂ—) + ‘f;(MT(a2 ~ 1)+ (1 = Mr)(—a? -a)) "; <a< %
(atia) | 5(g7 1) i<a<y,

which clearly proves our assertion. a

5 The case H*®

In this section we introduce a class of processes for which Z = 0 is indeed the best
approximation in H®. This class includes also the example of section 4. We start
with definitions.

Definition 5.1 Let X be in BMO. Then we call a stopping time T proper for X, if
P{X)T < (X)oo] > 0.

Definition 5.2 A process X in BMO has the property QS (quasi-stationary), if
for each proper stopping time T for X, we can find another proper stopping time
S>T P-a.s. for X, s.t. SX1sxzo)/P[{°X # 0}] ~ X hold. Here ~ stands for
equality in law.

Our next lemma shows that - not very surprisingly - for @S processes the BM O-norm
"does not decline”, no matter when the process is started.

Lemma 5.1 Let X be in BMO with the property QS. Then for all proper stopping
times R we have ||*X||smo, = ||X|lamo0,

Proof: Let U be a proper stopping times.t. U > R P—a.s.and UXI(UX;EO)/P[{UX E3
0}] ~ X hold. We get

E[("X " Xr)?] E((Xe = X1vR)?]
RX 2 - ] — =) \ >
“ ”BMOz Sl;p P[T( OO] s‘;_p P[T < OO] =
E[(Xe — X1)?] E[(Xe — X1)?]
> 2 = 2 .

T PT<oo] 230 PT<oo] — Xllewos
The reverse inequality follows from Lemma 2.1. u}
Using a result proved by W. Schachermayer in [5], which characterizes the distance
of a given martingale to H* in || - ||smo,, We get our final result.

Theorem 5.1 Let X be in BMO with the property QS. Then we have

Zier;lf°o 1X - Zllmo, = || X||Bmo,
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Proof: Assuming the contrary, namely
L X = Zllsmo, < I XIlamo,,
vields. by applying Theorem 1.1 of [3], a finite increasing sequence of stopping times
0=T<Th<..<Ty<Ty4y =0
s.t.

||T"XT"H llBmo, < || X|lBmo, n=0,...N

(Without loss of generality we may assume that Ty is a proper stopping time for X.)
In particular we find

™ X|8amo, < 1 X1|8M0,,
which is a contradiction to Lemma 5.1. ]
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