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Some remarks on L~, H°° and BMO

Peter Grandits

1 Introduction

In [1] C. Dellacherie, P.A. Meyer and M. Yor proved that L°° is neither closed nor
dense in BMO, except in trivial cases (i.e. if the underlying filtration is constant).
The same is true for H°° (c.f. [3] section 2.6 and [5]). So one may ask, whether it is
possible to find a martingale X E BMO, which has a best approximation in L°° resp.
in Hoo, i.e.

inf ~X - Z~BMO = ~X - Z~BMO for some Z ~ L~
resp.

inf ~X - Z~BMO = ~X - Z~BMO for some Z E H~.
It is easy to see that this is equivalent to the question: does there exist a martingale
X E BMO s.t.

inf ~X - Z~BMO = ~X~BMO

resp.

inf ~X - Z~BMO = ~X~BMO.
holds? R. Durrett poses this problem for L°° in [2], p. 214, and he conjectures a
solution for X. We show in this paper that a discrete time analogue of Durrett’s
example works, but in continuous time it does not. In the case of H°° we provide a
class of processes (including Durrett’s example), for which Z = 0 is indeed the best
approximation in Boo. Note that for the negative result in L°° we work with the norm
II ’ IIgMO,, as the problem was posed by Durrett in this way. For the positive result
in H°° we use I I which seems to be more natural in this case.

2 Notations and Preliminaries

We denote by BMO the space of continuous martingales X on a given stochastic
basis (fZ,.~’, P), satisfying the "usual conditions" of completeness and right
continuity, for which the the following equivalent norms are finite

~X~BMO1 = sup{~E~X~ - XT~FT]~~} = sup{(E[|X~ - XT|] P[T  ~)}
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~X~BMO2 = sup{~E[(X~ - XT)2 }FT]1 2~~} = sup{ (E[ (X~ - XT)2] P[T  ~) 1 2} =

sup{~E[X~ - XT|FT]1 2~~}.

Here T runs through all stopping times. In the present context H°° denotes the space
of continuous martingales M on P) s.t.

holds. We also use the following standard notation. If M is a martingale and T a
stopping time, we denote by the martingale stopped at time T, i.e.

Mt 
and by TM the martingale started at time T, i.e.

TM=M-MT.

The next easy lemma is maybe folklore, but for the convenience of the reader we
provide a proof.

Lemma 2.1 Let X be in BMO and R art arbitrary stopping time. Then we have

~RX~BMO2 ~ ~X~BMO2.
Proof: We prove that I J HdX~BMO2  ~X~BMO2, if H is previsible with IH)  1,
which immediately implies the assertion of the lemma.

3 The case L°° - a discrete time example
We give in this section an example of a discrete-time process, for which Z = 0 is indeed
the best approximation in L°°, if we use the space bmo1 (c.f. [4]) as an analogue to
BMOI in the continuous-time setting. Let (Wn)o be a standard random walk on

with natural filtration, i.e. =1}~ = = -1}~ = 1 2and Wo = 0. Let T be the stopping time T = inf{n|0394Wn = -1}, and Bn _
W,T = This is a discrete-time analogue of the continuous martingale, which
we consider in section 4, and which was suggested by Durrett in (2~.

Denoting the bmo1-norm by an easy calculation gives

IIBII* = sup BS~FS]~~ = sup BsIIBs = k]~~ =S kENo
cx>

BsIIBs = 0]~~ = E[|B~|] = 03A3|r|2-(r+2) -1,
r=-1
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where the supremum is taken over all stopping times Sand No denotes the set
{o, l,?, ...}. We denote by P) the space of all bounded martin-
gales with respect to the given filtration. Our claim is

Proposition 3.1

inf ~ B - Z~ =1,

i.e. Z = 0 is the best approximation in L°° of B.

Proof: We shall show that assuming the existence of a Z E L°°, which fulfills 
Z~ = a  1, leads to a contradiction.

As the definition of the bmo1-norm is invariant with respect to an additive constant,
we assume that Z > 0 holds. Furthermore the function f (t) = is a
continuous convex function with f(0) = 1 and f (1) = a. Therefore we may assume
w.l.o.g. that  4 holds, and we remain with

Zoo = ak on Ck for k = -1,0,1,...,

where

0 ~ ak ~ 1 4 (1)

holds, and the atoms Ck are defined by Ck = {Boo = k}. Since the filtration is given
by

fin = {C_1, C0, ..., Crn_2, (Cn_1 U Cn U ...)} n = ~,1, 2, ...,
and P(Ck] = 2’~k+2~, one can easily calculate Zn = for n = 0,1, 2, ....

Zn = ak on Ck for k = -1, o, l, ..., n - 2
cn

ar2 (r+2 n) =: on (C’n_1 U Cn U ...)r=n-l
Hence we get for n = 0,1,2,...

on C-i U Co U ... U 

resp.

and

Zoo - Zn = on C~ + 1,....

As the supremum over all stopping times in the definition of the bmoi-norm can be
replaced by a supremum over all fixed times n, we calculate 
which is 0 on C_1, Co, ..., Cn-2 and

cn

E S - an+ ~2-(J+2)
=-! I

on Cn-1 U CnU, ....
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Using eq. (1) and our assumption ~B - Z~ = a  1. we conclude that

(an-1 - 03B3n-1 ) 1 2 + |an - 03B3n-1|(1 2)2 + (-an+s + 03B3n-1)2-(s+2) ~ -03C1 := 03B1 - 1

has to hold for n = 0, 1,2..... We now distinguish two cases.
Case 1: -an + > 0

A simple calculation gives
p.

Case 2: -an +’Yn-1  0

In this case we get + 3an-l + 3an _ -3p. This inequality and our assumption
in case 2 allow us to conclude that an-l  an has to hold, and we finally get

2

3p,

Denoting now a~ = 3 p > 0, we can combine case 1 and case 2, which yields
- an-i + 7n-i > 0’ n = 0,1,2,...

or 

-1 2 an-1 + as2-(s-n+2) > 03C3 n = 0, 1, 2, .... (2)

Defining A = aJ, implies the existence of an M, s.t. aM > ~ 2014 7, and we
infer that 

~ 

holds, which is a contradiction to eq. (2). D

4 The case L°° - a continuous time example
In contrast to the discrete case it seems to be not so easy to find a martingale in
BMO in continuous time, which has a best approximation Z = 0 in Loo. It is shown
in this section that the - in some sense - natural guess of Durrett [2] of a martingale,
which is quasi-stationary, in a sense to be defined later, does not work. However, it
will be shown in section 5 that this quasistationarity is sufficient to guarantee a best
approximation Z = 0 in H°°.

Let a standard Brownian motion on P). As in (2~ we
define Ro = 0, Rn = inf{t > Wt - > 1 }, N = inf ~ n : WRn - 
- 1} and finally Xt = The following formula is valid for a E (-1,1) (c.f. [2] ,p.
208)

~x~BMO1 = sup ~E~X~ - XT~FT]~~ = sup E[|X~ - XT~XT = a] =

sup 1(-1,0](a)(1 - a2) + 1(0,1](a)(a + 1)(2 - a) 2 = 9 8.

Our claim is now
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Proposition 4.1

inf ~X - Z~BMO1  9 8,
where L~ = P) is the space of continuous bounded martingales.

This answers negatively the question posed by Durrett in Ex. 1 of sect. 7.7 in [2].
Proof: In order to prove the proposition some further notation is needed. We define

Ar=~w:.~~=r} r= -1,0,1,...
Sn = inf {t > : Xt - = 2 } n =1, ?, 3, ...,

where we use the convention inf0 = oo. Furthermore we need

Ab = !~r n = 00
r=-1,0,1,...

and finally

M - f 0  t  Sn
’ 1 1 SntRn, n= 1,2,3,....

The process M indicates, whether X has reached the value + t in the stochastic
interval or not, and is essential for the calculation of the conditional
expectations occurring in the sequel.

A straightforward but lengthy application of the optional stopping theorem yields
the following table of conditional probabilities, which we will need later on.

We define now a bounded continuous martingale Z, which gives a better approxima-
tion of X than the trivial approximation Z = 0:

Zoo = 61~~ A,
Zt = 

with b > 0. This yields
ZT = 03B4P[SN = ~|FT|.

Again it suffices to consider a E (-1,1). Since holds, we only have to
show that

E[|X~ - XT - Z~ + ZT~XT = a, MT]  E[|X~ - XT~XT = a] = (a + 1)(2 - a) 2

holds for a E (4, 3 4] uniformly in .NIT, and then to choose 8 small enough.
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Using again the optional stopping theorem, an easy calculation gives the following
table.

Putting things together we arrive - after a lot of algebra - at

= a, MT] =

f + - l~ + (1- MT -a2 ’ a 4  a  2
(a+1)(2-a) 2 + 03B4 6(a2 - 1) 1 2 ~ a ~ 3 4,

which clearly proves our assertion. 0

5 The case Hoo 
,

In this section we introduce a class of processes for which Z = 0 is indeed the best

approximation in This class includes also the example of section 4. We start
with definitions.

Definition 5.1 Let X be in BMO. Then we call a stopping time T proper for X, if
P[(X)T  > 0.

Definition 5.2 A process X in BMO has the property QS (quasi-stationary), if
for each proper stopping time T for X, we can find another proper stopping time
S ~ T P - a.s. for X, s.t. 0}~ ~ X hold. Here ~ stands for
equality in law.

Our next lemma shows that - not very surprisingly - for QS processes the BMO-norm
"does not decline", no matter when the process is started.

Lemma 5.1 Let X be in BMO with the property QS. Then for all proper stopping
times R we have ~RX~BMO2 = ~X~BMO2

Proof: Let U be a proper stopping time s.t. U > R 
0}] ~ X hold. We get

~RX~2BMO2 = supE[(RX~ - RXT)2] P[T ~] = supE[(X~ - XTR)2] P[T  ~] ~

supE[(X~ - XT)2] P[T  ~] ~ sup E[(X~ - XT)2] P[T  ~] = ~X~2BMO2.

The reverse inequality follows from Lemma 2.1. 0

Using a result proved by W. Schachermayer in [5], which characterizes the distance
of a given martingale to H°° ~BMO2, we get our final result.

Theorem 5.1 Let X be in BMO with the property QS. Then we have

inf ~X - Z~BMO2 = ~X~BMO2
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Proof : Assuming the contrary, namely

inf ~X - Z~BMO2  ~X~BMO2,

yields, by applying Theorem l.l of [5], a finite increasing sequence of stopping times

0=TaT,...T;,~T~,~,,=oc

s.t.

~TnXTn+1~BMO2  ~X~BMO2 n = O, ..., l’v

(Without loss of generality we may assume that T,y is a proper stopping time for :X.)
In particular we find

 

which is a contradiction to Lemma 5.1. D
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