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On the lengths of excursions of some Markov
processes*

Jim Pitman(1) and Marc Yor(2)

(1) Department of Statistics, University of California, 367 Evans Hall # 3860,
Berkeley, CA 94720-3860, USA
(2) Laboratoire de Probabilités, Universite Paris VI, 4 Place Jussieu,
75252 Paris, France

Abstract. Results are obtained regarding the distribution of the ranked
lengths of component intervals in the complement of the random set of
times when a recurrent Markov process returns to its starting point. Vari-
ous martingales are described in terms of the Levy measure of the Poisson
point process of interval lengths on the local time scale. The martingales
derived from the zero set of a one-dimensional diffusion are related to mar-

tingales studied by Azema and Rainer. Formulae are obtained which show
how the distribution of interval lengths is affected when the underlying
process is subjected to a Girsanov transformation. In particular, results
for the zero set of an Ornstein-Uhlenbeck process or a Cox-Ingersoll-Ross
process are derived from results for a Brownian motion or recurrent Bessel

process, when the zero set is the range of a stable subordinator.

1 Introduction

Let Z be the random set of times that a recurrent diffusion process X returns to its
starting state 0. For a fixed or random time T, let V(T) = (Vl(T ), ~2(T ), ~ ~ ~) where

%(T) > ) > ... (1)

are the ranked lengths of component intervals of the random open set (0,T)BZ. Fea-
tures of the distribution of the random sequence V(T) have been studied by a number
of authors [17, 32, 11, 15, 18, 19, 24, 25, 26]. It is well known that Z is the closure of

the range of the subordinator (T8, s > 0) which is the inverse of the local time process
of X at zero. If (T8) is a stable(a) subordinator for some 0  a  1, as is the case
if X is a Brownian motion without drift (a = 1/2) or a Bessel process of dimension
2 - 2a, it is obvious that the law of V(t) /t is the same for all t, and that the law of

is the same for all s. It is less obvious, but nonetheless true [24], that the
common law of V(t) /t for t > 0 is identical to the common law of for all
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s > 0. See [25] for a detailed study of this probability law on decreasing sequences of
positive reals with sum 1, and relations between this distribution and Kingman’s [11]
Poisson-Dirichlet distribution on the same set of sequences.

If Z is the zero set of a real valued diffusion, the law of which is locally equivalent
either to Wiener measure, or to the distribution of a Bessel process of dimension 2-2a

started at 0, it follows from the identities in distribution mentioned above that for each
t > 0 and s > 0 the laws of V(t ) /t and are equivalent, that is to say mutually
absolutely continuous. Our interest here is in describing explicitly the Radon-Nikodym
densities relating these various laws, and thereby extending various aspects of our
previous studies of zero sets derived from a stable(a) subordinator to this more general
case. We start in Section 2 by treating the example of Ornstein-Uhlenbeck processes.
In particular, we obtain various generalizations of results of Truman-Williams [30, 31]
and Hawkes-Truman [5] regarding the zero set of the simplest Gaussian-Ornstein-
Uhlenbeck process derived from Brownian motion. The results of Section 2 lead to the

study in Section 3 of various martingales associated with the range of a subordinator
which arise from a change in the Levy measure of the subordinator. Finally, in Section
4 we compare the results of Sections 2 and 3 to some relations between the stationary
distribution of a recurrent Markov process and the Levy measure of the inverse local
time process at a point in the state space. While the basic relations are known to hold
in great generality [20], the application of these relations to the zero sets of diffusion
processes has been rather neglected in the literature.

2 Lengths of excursions of Ornstein-Uhlenbeck
processes

The Ornstein-Uhlenbeck process (Ut, t > 0) with parameter ~ > 0 is the solution of
Langevin’s equation

dUt = dBt - Ut dt (2)
where B is a Brownian motion. So far as the zero set of U is concerned, we may as
well consider the process X := U2. More generally, we consider for 0  a  1 and

tc > 0 the squared OU process with dimension b = 2 - 2a and drift parameter p, that
is the non-negative solution X of

dXt = 2XtdBt + (03B4 - 2 Xt) dt (3)

where we assume Xo = 0. Denote by the law of this process X on the usual path
space C[0,oo). See [22, 23, 6] for further background and motivation for the study of
these processes, known in mathematical finance as Cox-Ingersoll-Ross processes. Note
that for a positive integer b, if U solves (2), where we now suppose that the equation
concerns R03B4-valued processes, then X = solves (3). Let Z denote the zero set of
X, now taken to be the coordinate process on and define Vn(T) in terms of
Z as in (1). Let Qs = Q6,0, so Q6 is the law of the square of a b-dimensional Bessel
process [29, 22]. Let (St, t > 0) denote a local time process for X at zero, and let (Ts)
be the right continuous inverse of this local time process. Then (TS) is a stable (a)
subordinator, and almost surely the zero set Z of X is the closure of the range
of (TS). Note that while the definition of both (Sd and (Ts) depends on the value of
b, this dependence is hidden in the notation.
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We recall the Cameron-Martin-Girsanov relationship between and Qb: for

every t > 0

dQ03B4,  dQ03B4 |Ft 
= 

exp(-  2(Xt-03B4t)(Xt - 03B4t) - 2 2t0 duX03B1) 
(4)

As a consequence of (4) and the recurrence of X under for every  > 0, we have
also for every s > 0 that

dQ03B4,  dQ03B4|Fs = exp( 03B4s 2 - 2 2 s0duXu) (5)

From this absolute continuity relation, it is immediate the zero set Z of X is repre-
sented Qb~’‘ almost surely for all ~c > 0 as the closed range of the process (T$), which
is a subordinator under for each u > 0, a subordinator that is stable for  = 0
but not for  > 0. The Levy measure of under Q03B4,  can be computed from (5) as
indicated below.

Theorem 1 For a random time T let VT = Q(Un(T ), n = l, 2, ’ ’ ~). Then for each
t>0

dQ03B4,  dQ03B4| |03BDt 
= exp( 03B4t 2) 03A3( ,t)03A0( ,t)2-03B4 2 (6)

and for each s > 0

dQ03B4,  dQ03B4| 03BDs = exp( 03B4s 2 ) 03A0( ,s)2-03B4 2 (7)

where

03A3( t) = 1-e-2 Vn(t) 2 t and 03A0( ,t) = Vn(t) sinh( Vn(t))
Proof. Let Gt = sup(Z n [0, t)). Note first that for fixed t,

Vt~Ht~FGt

where Ht = ~(Ga, 0  s  t) and = ~(XS1~~~G~1, 0  s  t). Moreover, for each
s > 0, the random time T$ is an stopping time with Ts = GTa a.s., and

VTa C C 0.x

modulo Qb null sets. Consequently, we will be able to prove the formulae of the
theorem by projecting the Q6 martingale which appears in (4), first on then on

(1it), and finally on the 03C32014field Vt. (Note that Vs is not contained in Vt for s  t. So
unlike the other families considered above, the family (Vt, t > 0) does not constitute
a filtration.)
Projection on Here we will use the fact that under Qd the squared meander

(m2u := 1 t-Gt XGt+u(t-Gt), 
0~ u ~ 1)

is independent of and satisfies

(muo~~~l) ~ 
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where (/?m0  u  1) is a standard Bessel bridge of dimension 2 - ~, and R is an
independent 2-dimensional Bessel process. See [33, Corollary 3.9.1, page 44]. From
the above description of (m~,0  u  1), as a special case of the extended Levy
area formulae given in [33, (2.1) and (2.5)], and in [22, (2.k)], we easily deduce the
following formula: for all > 0

~p(-~-~~)] ~ (~-(cosh~s~)’’ (8)

In particular, for 03B3 = 03BD/2,

~[exp(-~-~’~~)j =W:=(~)~~ (9)

We deduce from (4) and (9) that

~ = ..X.) (10)dQb|FGt

Projection on (~)- From the previous formula we obtain

dQ03B4,  dQ03B4|Ht 
= exp ( 03B4t 2) 03A603B4( (t - Gt))03A0( , Gt)2-03B4 2 (11)

We derive (11) from (10) using the excursion theory under Q03B4, in particular, the fact
that under ?~, the corresponding Ito law of excursions, given that the lifetime equals
v, the excursion process  t?) is a Bessel bridge of dimension 4 - ~, and we have
used the Lévy-type formula [22, 33]

Q4-03B4(exp- 2 2 v0ds Xs|Xv = 0 ) = ( v sinh( v) 2-03B4 2

Since03A0( ,Gt)=03A0( ,t)(sinh( (t-Gt)) (t-Gt))

and 

~j~h ~ 2~§ ~ 1 _ ~-2x~(2014) =h~-)
we can write (11) as

dQ03B4,  dQ03B4|Ht = exp( 03B4t 2)(1-e-2 (t-Gt) 2 (t-Gt)) 03A0( ,t)2-03B4 2 (12)

Projection on (03BDt). Formula (6) follows from the previous formula (12) and the result
of [24] that

(13)
D
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Let denote the Levy measure of (Ts) under So by definition

Q~ (exp(-~)) = exp (-~"(1 - (14)

Write simply A~ for A~. From Theorem 1 and the basic formula

= = (15)
where C is a constant depending on the choice of normalization of local time, we
obtain for p > 0 the formula 

’

A~(~)=C 2014201420142014 ~ (16)

To check, we recover (15) from (16) in the limit as  ~ 0. And for 03B4 = 1 we recover
the result of Hawkes-Truman [5] for the zero set of the Gaussian-Ornstein-Uhlenbeck
process. See also Section 4 for another confirmation of the formula (16) which involves
almost no calculation. By combination of (14) and (12) we obtain for p > 0 the
formula

1 - 
~ - Gt = = 

~_~~ (17)

which is a particular case of formula (7.d) of [24]. From the proof of Theorem 1, we
extract also the following corollary, which is a particular case of more general results
presented in the next section.

Corollary 2 Let Gt = sup( Z n [0, t)) where Z is the range of a stable (a) subordinator
and let Ht = 03C3(Gs,0 ~ s ~ t). Then for every p > 0

~-~))~~-~n(~~)" (is)

is an (Ht)-martingale, where := (1 2014 e*~)/(2~ and

~’-~’n(.~~)))" 
~ 

(’~

is an (HT.)-martingale.
Remark 3 The formula (12) and the more general formula (30) presented in the next
section are closely related to the studies by Azéma [1] and Rainer [27] of martingales
relative to the filtration generated by the zero set of a real valued diffusion. In

particular, if > 0) is a recurrent diffusion on natural scale on a subinterval of
the line containing 0, and A = A+ + A- is the decomposition of the Levy measure A
induced by positive and negative excursions, as discussed further in Section 4, then
the process

t := 1(Xt>0) 039B+(t-Gt,~) - 1(Xt0) 039B_(t-Gi,~) (20)

is an (Ht) local martingale. (This is, up to a factor of 1/2, the formula at the end
of the introduction of [27], after correction of a misprint in that formula as indicated
at the end of the present volume.) Our martingales (18) and (30) can be recovered
by application of Itô’s formula. If (Xt) is Brownian motion, then is a constant

multiple of Azéma’s martingale - Gt .
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3 Change of measure formulae for subordinators
Let probability distributions P and Q on the same basic measurable space (S~, ,~’)
govern a process (Ts, s > 0) as a subordinator, with Levy measures Ap and AQ
respectively. We assume that

AQ(dy) = for such that (21)

 ~ 
~ (22)

and use the notation

nP(x) = = = yy)nP(dy) (23)

Let Z be the range of (TS), Vn(T) as in (1). Let (St, t > 0) be the continuous local
time inverse of (Ts, s > 0).

Theorem 4 Under the hypothesis (22) on the function ~ = dAQ/dAp, define a func-
tion ~ and a real number ~y by

03A8(0) = 1; 03A8(x) = Q(x) P(x) (x > 0 :039BP(x) > 0), (24)

03B3 = ~0(03A6(x) -1)039BP(dx) = ~0(039BQ - 039BP)(dx) (25)

and define processes (jj~(t), t > 0) and t > 0) by

= (t > 0) (26)
n

= ‘~(t - (27) )
Then for each (Ht)-stopping time T such that P(T  oo) _ Q(T  oo) = 1, the law
Q is absolutely continuous with respect to P on with density

dQ dP|HT 
= M03A6(T) (28)

In particular this formula holds for every fixed time T, and for T = T$ for every s > 0,
in which case the right side of (28) is

M~(T$) _ (s > 0) (29)

Consequently,
(M~(t), t > 0) is an ((~-lt), P)-martingale (30)

and
> 0) is an (31)

By combination of Theorem 4 with Theorem 7.1 of [24] we obtain the following:
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Corollary 5 Suppose further that P(dy) = pp(y)dy == pQ(y)dy for some
densities pp and ~Q which are strictly positive on (0,oo). . For y > 0 and t > 0 let

~; ~ E ~ (32) 

and define and similarly with Q instead of P. Then

03A6(x) = 03C1Q(x) 03C1P(x) (x>0); 03B3= ~0(03C1Q(y) - 03C1P(y))dy (33)

For fixed t > 0, let 03BDt = 03C3(Vn(t), n = 1,2,...). Then

dQ dP|03BDt = HQ(t) HP(t)03A003A6(t)exp(-03B3St) (34)

Proof of Corollary 5. The formulae (33) are immediate. To deduce (34) from (28),
it suffices to take T = t and project the density in (28) onto the u-field Vt, using the
fact that and St are Vt-measurable, the fact that = n~(~)/~(~ - Gt)
and the formula

EP[(hQ hP) (t-Gt)|03BDt] = HQ(t) HP(t) (35)

which is obtained by evaluation of the left side of (35) using the sampling formula

(36)

established in Theorem 7.1 of [24]. This shows that the right side of (35) equals

~ ~n ~ ’

Proof of Theorem 4.

Step 1. Proof for T = s for fixed s > 0. In this case we have Gs = 0 a.s. so

- (3~) = 1, and the task is to show that for every non-negative 7~-measurable
random variable X,

EQ(X) = where = (38)

This is a consequence of the following variation of Campbell’s formula {12, (3.35)]: for
$ satisfying (22),

EP [03A6(Vn(s))] = exp(s~0(03A6(x)-1)039BP(dx)) = exp(03B3s) (39)

Apply (39) with Q instead of P and g instead of 03A6, for non-negative g with -

1|dQ  ~. Then write (g-1)03A6 = (g03A6-1) - (03A6-1) and use (39) again twice under
P to see that (38) holds for X = Varying 9 provides enough X’s to
deduce that (38) holds for all non-negative ~.’measurable X’s. But the u-field ~ is
contained in ~ = 7(7-u,0  u  ~), and the identity (38) extends to all non-negative
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Hs-measurable X because P and Q share a common conditional distribution for
(Tu, 0  u  s) given Vr", that is the unique law of an increasing process parameterized
by [0, s] with exchangeable increments and jumps of the prescribed sizes =

1,2,. ". (Assuming for simplicity that Ap is continuous, to avoid ties among the
Vn(TS), we can write

Tu = E u) (O  u  s) (40)
n

where un is the a.s. unique local time u such that Tu - = vn(T$). The common
conditional law of (Tu, 0  u  s) given VTs is then specified by the fact that under both
P and Q the un are i.i.d random variables with uniform [0, s] distribution, independent
of See [10] regarding this decomposition of Tu and the corresponding result
allowing Ap to have a discrete component).

Step 2. Proof for T = t for a fixed t > 0. From the previous result for T = Ts, for
all s, t > 0 we can compute

dQ dP|Ht = EP(M03A6 (s) |Ht^s ) on (t  s) (41)

But on (t  we find that

~~(TS) = (42)

where II* is the product of over n corresponding to those component inter-
vals of that are contained in Let (St) denote the continuous local
time inverse of (Ts). By the strong Markov property of (Tu, u > 0) at the stopping
time St, when Tst = Dt, and (39), ,

Ep ~)) (43)

Also, by the last exit decomposition at Gt,on the event > t), which is identical to
(St  s),

P (Dt - Gt E dy TS > t, t - Gt = x) = (y > x) (44)

Combining these observations shows that

Ep = on (t  Ts) 45

That is to say, for every non-negative Ht-measurable random variable Ht

= (46)

Now for each t > 0 we can let s --~ oo, and use the fact that i 1 both P and
Q a.s. to deduce EQ(Ht) = Ep(Ht Zt ), which is the desired result.
Step 9. Proof for a general (Ht)-stopping time T with P(T  ~) = Q(T  ~) = 1
This is a reprise of the previous argument, first using the optional sampling theorem
for T A t, then letting t --~ oo.
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Example 6 As an example of the situation described in Theorem 4 where y ~ 0,
. following Kinkladze [13] we now consider the pair of diffusions B and X(~‘~, where B
is a Brownian motion, and with law is the solution of

dXt = sgn(Xt) dt

We have
= exp Stl - 2 ~2t) ’ (47)

where (St, t > 0) denotes the local time of X at 0. From (47) we deduce

= exp 2~c2t (48)

where f(A) := E[exp(Ami)] for mi the value at time 1 of a Brownian meander, that
is

f(03BB) ~0r exp(-r2/2)exp(03BBr)dr

It follows that

dP( ) dP|Ht 
= 03A8(t - Gt)03A003A6(Gt) exp(-03B3St)

where
= ~(x) = ’Y = -~

4 The Levy measure of the inverse local time pro-
cess

Let 0 be a recurrent point in the state-space E of a nice recurrent strong Markov
process X. . Let To = : t > 0, Xt = 0}. Assuming that 0 is regular for itself, that
is Po(To = 0) = 1, it is well known that there exists a continuous increasing local time
process for X at 0, say (Lt, t > 0), whose right-continuous inverse, say (Te, ~ > 0) is
a subordinator under Po. Let A denote the Levy measure of this subordinator. Due
to different conventions about the normalization of local time processes in different

settings, let us allow an arbitrary normalization of (Lt) in this generality. So A
is unique up to constant factors: multiplying L by c divides A by c. It is known

[4] that such a Markov process X admits a u-finite invariant measure m such that
= oo) = 0. As a consequence of a general Palm formula for excursions of

stationary (not necessarily Markovian) processes established in [20], this m is unique
up to constant multiples and there is the identity

(a > 0) (49)

for some c > 0 depending on the choice of m and the choice of normalization of local
time. That is to say, the Pm distribution of To has an atom at 0 of magnitude 
and has a density on (0, oo) given by cA(a, oo) for 0  a  oo. 

,

The connection between the invariant measure m on the state-space of X and the
Levy measure A on (0, oo) is made via Ito’s law n for excursions c of X away from 0.
Assume that an excursion 6 = (et, t > 0) is absorbed at 0 at time To = TO(é) = inf {t :
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t > 0, ét = 0}. And assume for simplicity that m~0} = 0, which is to say that the
Lebesgue measure of the zero set of X is 0 a.s. P~ for all x E E. By definition of n

[7, 28]), the Levy measure A of the inverse local time process at 0 is the n distribution
of To:

A(a, oo) = n(To > a) (a > 0) (50)

Also, the formula

mf = T00 f(~t)dt (f ~ 0) (51)

for non-negative measurable functions f on E defines an invariant measure m for X

[4, 20], and if we take this m in (49) the constant c is forced equal to 1. That is to
say, for m defined by (51 )

Pm(T0 ~ da) = 039B(a,~)da (a~ 0) (52)

As shown in [20], this identity is a consequence of the following more general identity.
Let n* denote Maisonneuve’s exit law for state 0, that is the distribution on path-
space under which (Xt, 0  t  To) and (XTo+u, U  u  oo) are independent with
laws n and Po respectively. Then for an arbitrary non-negative measurable Y defined
on path-space

Pm(Y) = n* (T00 Y(03B8t)dt) (53)

where ()t is the usual shift operator on path space, so

Taking Y = f (Xo) yields (51), while taking Y = h(To) for a non-negative measurable
h on (0, oo) and using (50) yields (49).

Suppose now that X is a recurrent diffusion process on a subinterval of the line
containing 0. Let m+ and m- denote the restrictions of m to (0, oo) and (-oo, 0)
respectively, so m = m+ + m-. By path continuity of X, each excursion is either
positive or negative, and there are corresponding decompositions n = n+ + n- and
A = A+ + A- which imply via (53) that (49) holds just as well with m replaced by
mt and A replaced by A:f:, where f is either + or -.

The decomposition A = A+ + A- and reflection through 0 reduces computation of
A to computation of A+.

Put another way, there no loss of generality in assuming, as we shall from now on,
that the statespace E of the diffusion is either [0, oo) or [0, b] for some b > 0. To be
definite, assume E = (0, oo).

Example 7 It is known [22] and easily checked that if X has distribution Q6,O, then
the process defined by

= (-00  t  oo) (54)

is a two sided stationary process governed by the stochastic differential equation (3)
for t > 0. Let r~ = denote the distribution of

Xs,u~(~) = X(l/2/.) ~ (2~-~(1) ~ (55)
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where Za denotes a gamma(a) variable. Then the P~ distribution of To considered in
(49) is immediately identified in this example with the distribution of

inf{t > 0 : : X03B4, (t) = 0} = inf{t > 0 : X(e2 t/2 ) = 0} (56)

= 1 2 log(2 D1/2 )  1 2 log(D1) (57)

where Dt = inf {u > t : X (u) = 0}. Since the distribution of Dt for a stable(a) zero
set is given by

Dt = tD1 = t G1 = t Z03B1,1-03B1 (58)

where Za,b denotes a beta(a, b) variable [3,17], a simple change of variables yields the
following formula for the density of (2/~)’~ log(Di) in (57), hence for A(a, oo) in (52) :

039B ,03B4(03B1,~) = P[(2 )-1(logD1)~da] da = 2  0393(03B1)0393(1-03B1) e-2 03B103C3 (1-e-2 03B1)03B1 (59)
where a = 1-03B4/2. It is easily verified that this formula is consistent with the previous
formula (16).

Some general formulae for diffusions. In the case of one-dimensional diffusion

processes, there is an alternative local formula for A which has been known for much
longer than the global formula (52). Assuming for simplicity that the statespace is
[0, oo), the local formula for A is

039B(03B1,~) = c limPx(T0>a) s(x)-s(0) (60)

where s is the scale function of the diffusion and c is a constant depending on nor-
malization conventions for the scale function and the local time process. This formula

appears in Section 6.2 of It6-McKean[8], along with various Laplace transformed ex-
pressions of this formula now discussed. There are also corresponding local formulae
for Ito’s excursion law n and for Maisonneuve’s exit law n* in this setting, for instance
n*(Y) = c limx~0 Px(Y) s(x)-s(0) for appropriately regular Y. See e.g. Section 3 of [22] for
further discussion and other descriptions of n.

So far as the zero set of X is concerned, there is no loss of generality in replacing X
by s(X) where s is a scale function for X chosen so that s(0) = 0, such a choice being
possible due to the assumed recurrence of the boundary state 0. So let us assume that
X is already on natural scale, i.e. that s(x) = x, so the generator G of X, acting on
smooth functions vanishing in a neighbourhood of 0 is

G = 1 2 d dm d dx 
(61)

where m is the speed measure of X on and we assume for simplicity that
m{0} = 0. Now in (60) we obtain

039B(03B1,~) = 1 2 d dx Px(T0>a)|x=0+ (62)
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provided the local time process (Lt) at 0 is defined as Lt = L° where

is a jointly continuous version of the local times normalized as occupation densities
relative to the speed measure m of X. See e.g. [8].

In terms of the Laplace exponent

0(A) := 0 ~(1- = (63)

taking a Laplace transform converts (62) into

0398(03BB) = -1 2 d dx 03C603BB(x)
|x=0+ 

(64)

where

~a(x) = ) (65)
is well known to be the unique solution § of the Sturm-Liouville equation

G~ = A~ on (0, oo) with ~(0) =1, 0  ~  1, (66)
which can be written alternatively as

2y’ _ Am . ~ on (0, oo) with ~(0) =1, 0  ~  1. (67)
Another well known formula in this setting is

0398(03BB)-1 = ~0 e-03BBtp(t, 0, 0)dt (68)

where p(t, x, y) is a smooth transition density for X relative to m, that is Px(Xt E
dy) = p(t, x, y)m(dy). See our papers [22, 23, 21] regarding the relation between the
above formulae, the Ray-Knight theorems for Brownian local times, and the distri-
bution of quadratic functionals of Bessel processes, and see the work of Knight [14]
and Kotani-Watanabe [16] regarding the relation of these formulae to Krein’s spectral
theory for vibrating strings [9, 2]. Since the speed measure m is an invariant measure
for X, in this setting the global formula (52) gives

A(a, = E da)/da (69)
which when Laplace transformed amounts via (63) to

0(A) = (70)

Note that this formula holds just as well in the general Markov setting discussed
earlier. Comparison of (64) and (70) shows that the agreement of the local and global
formulae for A amounts to the following about the unique solution ~a of the Sturm-
Liouville equation (67):

~a(x) 
x=0+ 

= A (71)
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This is easily checked from (67), since from that equation the right side of (71) is

1 2 ~0 dx 03C6"03BB(x) = 1 2 (03C6’03BB(~) - 03C6’03BB(0+)) (72)

and since ~a is an increasing function of x the constraint that ~a is bounded forces
= 0. The formula (71) is a generalization of an identity of Truman-Williams

[30, (77) and (92)].

Example 8 Reflecting BM. Let X be RBM on ~0, oo). We take m(dx) = dx, local
time at zero is occupation density at 0+ relative to dx. The Laplace exponent is

0(a) = B/2A/2, and we find 03C603BB(x) = 03C6’03BB(0+) = 2.1 and 03BB~003C603BB(x)dx =

A/B/2A.
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