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On the martingales obtained by an extension
due to Saisho, Tanemura and Yor

of Pitman’s theorem

Koichiro TAKAOKA

Dept. of Applied Physics, Tokyo Institute of Technology*

Abstract

M. Yor constructed a family of one-dimensional continuous martingales
in connection with Saisho and Tanemura’s extension of Pitman’s theorem.

This paper reveals some properties of these martingales and the corre-

sponding stochastic differential equations. In particular, this implies that
the pathwise uniqueness theorem by Yamada and Watanabe cannot be

generalized to a non-diffusion case.

1 Introduction

M. Yor has recently showed the following property based on Saisho and Tane-
mura’s generalization [5] of Pitman’s theorem [2].

Theorem 1.1 (Yor [9], Corollary 12.5.1) Let 

dimensional Bessel process starting from the origin on a certain probability space
(5~,.~’, P). . Define

X03B1(t)  2 min R03B103B1+2(t) for t ~ [0,~).

Then, for each a > 0, FX03B1 -martingale, where FX03B1 =

denotes the filtration generated by 

Remarks. (i) As shown in Revuz-Yor [4] Theorem VI.3.5, we see from Theorem
1.1 with a = 1 and from Levy’s characterization theorem that ~Xl (t)) is a one-
dimensional Brownian motion. Therefore, {Xa; a > 0} is a family of R-valued
continuous martingales that includes one-dimensional Brownian motion.
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(ii) As known from the literature (e.g. the above cited book of Revuz-Yor), it
holds that

max = min ~0, oo), a.s.,
sE (O,tj sE (t,oo)

and hence Pitman’s theorem is equivalent to the above mentioned fact that

( Xl (t )) is a one-dimensional Brownian motion. Thus, Theorem 1.1 can be
viewed as an extension of Pitman’s theorem. Yor [9] has actually proved that
Theorem 1.1 holds for a larger class of diffusions; an even further extension is
done recently by Rauscher [3]. It should also be mentioned that in several works,
different generalizations of Pitman’s theorem were studied; e.g. Bertoin [1] and
Tanaka [6] [7].

(iii) Theorem 1.1 is proved in Yor’s book by using the "enlargement of filtra-
tion" technique first introduced by T. Jeulin. Note here that the filtration FX03B1
is strictly larger than 

0, = FR03B1+2t  03C3 ( min Ra+2 (s) .
sE[t,oo) /

The aim of the present paper is to investigate which properties of one-
dimensional Brownian motion hold for other members of our martingale family
{ Xa; a > 0} and which do not. Among others, the following two properties
will be shown:

1) The stochastic differential equations (henceforth SDEs) satisfied by (Xc,(~)), ,
a ~ 1, are of non-diffusion type and do not fulfill the Lipschitz condition. If

a  1, then pathwise uniqueness holds for our SDE. On the other hand, if

a > 1, even uniqueness in law fails; in particular, for a > 2, our SDEs are

counterexamples showing that the famous Yamada-Watanabe pathwise unique-
ness theorem for one-dimensional diffusion-type SDEs cannot be extended to
non-diffusion cases (Theorem 2.4).

2) For each fixed t > 0, the random variable is symmetrically distributed
with respect to the origin, while the processes (Xa (t)) and ( - do not

have the same law if a ~ 1 (Proposition 2.2 and Theorem 2.3).
This paper is organized as follows. In Section 2 we state our results. The

proofs of these properties will be given in Section 3. Throughout this paper, we
frequently cite the book of Revuz-Yor [4] as the basic reference.

Acknowledgements. A stimulating conversation with Professor T. Shiga has
improved Theorem 2.4(iii); sincere thanks are due to him. The author also wishes
to thank Prof. V. Vinogradov and Dr. J. Akahori for their helpful comments.

2 Statement of the results: some properties of
the martingales (Xa(t))

As mentioned above in the Introduction, the proofs of all the properties listed
in this section will be given in Section 3.
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Proposition 2.1 (i) If a ~ 1, then is not a Markov process, while the

R2-valued process

(X03B1(t), max X03B1(s)) t~[0,~)

is Markov for any 03B1 > 0.

(ii) For each a > 0, is self-similar in the sense that

o, tE[O,oo) 
(a) 

tE[O,oo) 
.

(iii) For each a > 0, is a divergent martingale:

lim oo a.s.,

where denotes the quadratic variation process of 

The next proposition generalizes well-known results for one-dimensional Brow-
nian motion.

Proposition 2.2 Fix a > 0 and t > 0.
(i) The distribution of is symmetric with respect to the origin:

Xa(t) ~a) -Xa(t).

In more detail, we have

P[X03B1 (t) ~dx ] = 
1 03B1(2t)03B1/20393(03B1 2) exp ( -|x|2/03B1 2t) dx, x~R.

(it) The following four random variables are all identically distributed:

(a) max X03B1(s) (= min R03B103B1+2(s));
(b) max X03B1(s) - X03B1(t) (R03B103B1+2(t) - min R03B103B1+2(s));
(C) |X03B1(t)| (= |2 min R03B103B1+2(s) - R03B103B1+2(t) |);
(d) R03B103B1(t).

The two questions which arise naturally from Proposition 2.2 are as follows:

. Is (Xa(t)), , as a process, symmetric with respect to the origin2

. Do (b), (c) and (d) of Proposition 2.2(ii) have, as processes, the same law?
since it is well known that the answer is "yes" for both of them if a = 1. The
next theorem, however, answers these questions in the negative for a ~ 1.
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Theorem 2.3 Suppose a ~ 1. .
(i) The following three martingales have different laws from one another:

(X a (t)) i

(- X03B1(t))t~[0,~);

. 
.

(t0sgn(X03B1(s))dX03B1(s)) t~[0,~)

(it) It also holds that (b), (c) and (d) of Proposition 2.2(ii) have, as processes,
different laws from one another.

We now turn our attention to the SDEs satisfied by our martingales.

Theorem 2.4 (i) For each a > 0, (Xa(t)) is a weak solution to the one-
dimensional SDE

a-1

|dXt = 03B1(2 max Xs - Xt)03B1 dWt;
(2.1) ~ Xo # 0j X0 = 0;

where (Wt) is one-dimensional standard Brownian motion.

(ii) If a > 1, then the above SDE also has the trivial solution X ~ 0, and so
uniqueness in law fails. Among the solutions of the SDE, the law of is
characterized as follows: if a weak solution (Xt) satisfies

(2.2) 
_ 

inf { t > 0 0 } = 0 a.s., ,

then it is identical in law to (Xa (t)) .
(iii) If a  1, then pathwise uniqueness holds; is the unique strong
solution.

Remarks. If a > 2, then 2   1. The first assertion of Theorem

2.4(ii) thus implies that uniqueness in law does not, in general, hold for the
one-dimensional SDE

dXt - ,

where X.) is a predictable functional and (Wt) is one-dimensional Brownian
motion, even if 

’

(2.3)

1 2 ~ ~~  1 , ~K > 0 such that |03C3(t,x.) - 03C3(t,y).| ~ K max |xs - ys|~.

In contrast, note that if Q (t, X.) depends only on t and Xt, i. e. if X. ) _
Xt), and if

3r > /-> 3K > 0 such that -  K x - 
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then pathwise uniqueness follows from the Yamada-Watanabe theorem [8]. It
should also be mentioned that if ~ > 1 instead of 2  ~  1 in (2.3), then the
Lipschitz condition is satisfied and pathwise uniqueness holds.

Finally, we deduce the following property from the proof of Theorem 2.4.

Corollary 2.5 (Xa(t)) is a pure martingale, i. e., .~~a = .~~ with ,Q being
the time-changed Brownian motion. Consequently, has the martingale
representation property.

3 Proofs

Proof of Proposition 2.1 (i) If (Xa(t)) were Markov for 1, then 
would depend only on the value of and not on the past history. It holds,
however, that

d(Xa]t t - t

= (03B1R03B1-103B1+2(t))2dt

= 03B12 (2 max X03B1(s) - X03B1(t))
2(03B1-1) 03B1

dt.
B /

The second assertion follows from the Markov property of the Revalued process

R«+2(t), min R«+2(s) .B sE (t,oo) 

(ii) The scaling property of (Xa(t)) follows from that of (Ra+2(t)).
(iii) It follows from the scaling property of (Ra+ 2 ( t )) that

~t ~ 0, [X03B1]t = t003B12R2(03B1-1)03B1+2(s) ds
(d) t03B1 1003B12R2(03B1-1)03B1+2(s) ds,

hence

dM > 0, P ~ ( lim  M ~ - lim P  ~VI
= lim P[ 1003B12R2(03B1-1)03B1+2(s)ds ~ M t03B1]
= 0. []

The next trivial fact will be used in the proof of Proposition 2.2.
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Lemma 3.1 Let r > 0. Suppose Y is a random variable uniformly distributed
on the interval [0, r~ . . Then 2Y - r is uniformly distributed on the interval [-r, r~; ;
in particular,

2Y - r ~~) -(2Y - r). .

Furthermore, the three random variables Y, r - Y and ~ 2Y - r ~ are all identically
distributed.

Proof of Proposition 2.2 (i) Conditioned by .~Ra+2, 
a random variable uniformly distributed on the interval ~0, Ra+2 (t)~ , since the
scale function of the diffusion s(x) _ - x . This and Lemma 3.1
imply that for each fixed t > 0, Xa (t) and -Xa (t) have the same distribution
conditioned by which yields the desired result. The calculation of the

density function follows along the same lines.

(ii) The same reasoning as in (i) leads to the equi-distribution property of (a),
(b) and (c). Revuz-Yor [4] Exercise XI.1.18 shows that

Va > 0, 0, min Ra+2(s) ~~~ Ra(t),
sE [t,oo)

so (a) and (d) have the same distribution. D

We also need the following lemma to prove Theorem 2.3.

Lemma 3.2 (c.f. Revuz-Yor [4] Exercise VI.2.32) Suppose M and N are diver-
gent continuous local martingales starting from the origin. Let ~Q and y denote
the time-changed Brownian motions of M and N, respectively. Then

( Mt ) ~~~ (Nt) ~ ~t~ ~a~ 
.

Proof of Theorem 2.3 (i) We have already shown in Proposition 2.1(iii) that
(X a (t)) is divergent. Let ,D be its time-changed Brownian motion. Then by
Lemma 3.2 we have

(X03B1(t))(d)(-X03B1(t)) ~ (03B2t, [X03B1]t)(d)(-03B2t,[X03B1]t)

~ (03B2t) (d) (-03B2t) conditioned by F[X03B1]~.

(d)
Thus, to prove (Xa (t)) ~ ( - it is sufficient to show that (03B2t) and (-,Qt)
have different laws conditioned by .~’~~o aJ. This is a consequence of the following
fact:

F[X03B1]~ = FR03B1-103B1+2~
= FR03B1+2~ since 03B1~ 1

= F

X03B1~

~ F03B2~ .
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Similarly, we can show that the third martingale in the statement of the theorem
is not identical in law to the other two.

(ii) First, it is easy to see that the law of (d) is different from those of the other
two processes, since only (d) is Markov among the three. Furthermore, as stated
in Revuz-Yor [4] Exercise VI.2.32,

(|X03B1(t)|) (d) (max X03B1(s) - X03B1(t))
~ (t0 sgn(X03B1(s)) dX03B1(s) = (- X03B1(t)),

so by (i) we see that (b) and (c), as processes, do not have the same law. 0

Proof of Theorem 2.4 (i) Straightforward.
(ii) We only have to prove the second assertion. First observe that any weak solu-
tion of the SDE satisfying the additional condition (2.2) is a divergent continuous
local martingale. Indeed, for almost all w E H, there exists some to = to{cv) > 0
such that Xto (03C9) > 0, and hence

lim[X]t(03C9) = ~003B12( 2 max Xs(03C9) 
- Xt(03C9))2(03B1-1) 03B1 dt

~ ~003B12(max Xs(03C9)) 2(03B1-1) 03B1dt

~ dt

= ~.

Next, define

Tt def 

X(Tt).

Clearly, (~it) is a one-dimensional Brownian motion starting from the origin. By
the inverse function theorem we have

~t>0, dt dt = 03B1-2 (2 max Xu-Xt)-2(03B1-1) 03B1

= 03B1-2(2 max 03B2u-03B2t)

-2(03B1-1) 03B1

,
B u6[0,t] /

thus 

~t ~ 0, t = t0 03B1-2 (2 max 03B2u - 03B2s)
(Note that To = 0 a.s. by the condition (2.2).) This implies that

Xt = 03B2(inf{s>0 | s0 03B1-2(2 max 03B2v - 03B2u)-2(03B1-1) 03B1 du >t }) .
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The law of a weak solution of (2.1) satisfying the condition (2.2) is therefore

uniquely determined.

(iii) The assertion is trivial if a = 1, so we assume a  1 in the sequel. We
divide the proof into three steps.
Step 1. We first show uniqueness in law. Since a  1, it is easy to see that

any weak solution of this SDE must satisfy the condition (2.2). Also, any weak
solution is a divergent continuous local martingale. Indeed, if a solution (Xt)
were not divergent, then, with positive probability, Xt(w) would converge to a
real number as t i oo. Then 2 max would also converge to a real

number for such an 03C9 as t ~ oo and hence

lim [X]t(03C9) = lim t003B12 (2 max Xu(03C9) - Xs(03C9))
2(03B1-1) 03B1

ds = ~,

a contradiction. The rest of the proof of uniqueness in law is exactly the same
as in (ii).

Step 2. Suppose S~, 3i, P, (Wt), (Xt) ) is a weak solution to the SDE

(2.1), i.e., ,

( Q, 3i, P, (~) ) is a filtered probability space, (Xt) is a semimartingale on it,
(Wt ) is an (Ft)-Brownian motion starting from the origin, and they satisfy (2.1 ) .
Define

R, def 2 maX X - X / ’t 
B sE[O,t] 

s t

Zt def 2 min Rs - Rt. .

It then follows from the Ito formula that ( H, 3i, P, (Ft), (Wt), (Zt) ) satisfies

(3.1) Zt = Wt + 03B1-1 2 t0ds max Zu-Zs
.

0 s

(For this equation, see also Revuz-Yor [4] Exercise XI.1.29 and Yor [9] Corollary
12.5.1.) Conversely, if ( Q, .~’, P, (.~t ), ( Wt ), ( Zt ) satisfies (3.1 ) and
(3.2) in{t>0| max Zu > 0 } = 0 a.s.,

then we define

Rt def 2 max Zs - Zt;

Xt def 2 min 
s t ,
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and it is not hard to see that (Xt) satisfies (2.1). Therefore, pathwise uniqueness
holds for (2.1) if and only if a solution of the SDE (3.1) satisfying the condition
(3.2) is pathwisely unique. We have already shown in Step 1 the uniqueness in
law, so it suffices to show that if both and Z~2) satisfy (3.1) in the same
set-up, then so does yt def V .

Since Zt2)~ is a process with continuously differentiable trajectories,
it is easy to verify that

dYt = Zt2))+
= + 1 ~ Z(i)Z(2) c - ,

and thus

(3.3)Yt = Wt+03B1-1 2t0ds{1{Z(1)s>Z(2)s} 2max Z(1) - Z(1)s + 1{z(1)s~Z(2)s} 2 max Z(2)u - Z(2)s}.s u s

If > Zs2) (w) then max > max Z,~2) (w), as we will see in Step~° 

3, so we can rewrite (3.3) as

(3.4) Yt = Wt 03B1-1 2 t0 ds{1{Z(1)s~Z(2)s} 2 max Yu-Ys + 1{Z(1)s=Z(2)s}.

(Note that max Yu = max Zul) V max Z2) .) Similarly, we have

(3.5) Yt = Wt + 03B1-1 2 t0 ds { 1{Z(1)s~Z(2)s} + 1{Z(1)s=Z(2)s} 2max Z(1)u-Z(1)s} .

Comparing (3.4) and (3.5), we see that for almost all 03C9 ~ 03A9 :

E [0, oo) = Z;2)(w) and max Z(1)u(03C9) ~ max Z(2)u(03C9)} = 0,

where  denotes the Lebesgue measure, and hence

t0 1{Z(1)s=Z(2)s} 2 max Z(2)u-Z(2)s
ds = t0 1{Z(1)s=Z(2)s} 2 max Yu-Ysds.

" ~ uE[O,s]

This together with (3.4) implies that

Yt = Wt + 03B1-1 2 t0 ds 2 max Yu- Ys
.
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Step 3. It remains to show that if > then max >

max Let
u6[0,.9] 

" ’ ’

so ~ sup {~ e [0..) j = Z~(~)}.
Then

:~"M-~’M)L.~-
which implies that

q-1_______1_______ a-1_______1_______
2 2 max Z~~)-Z~(~) - ~"2maxZ~(~)-Z~(~)~’~ ~° 

it6[0,so] 
" ~°

max > max since o;l.
" 

Also Z~~(~) > Z~~(~) for it E (so, ~]) thus we obtain the desired property. D

Proof of Corollary 2.5 We have already shown in the proof of Theorem 2.4
that is pure. Note that every pure local martingale has the martingale
representation property; see, for instance, Revuz-Yor [4] §V.4. D
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