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An Asymptotic Evaluation of Heat Kernel for Short Time1

In Honor of P.A. Meyer and J. Neveu

J.A. Yan

Consider the following heat equation

~u ~t = (0394 2 + V)u, (1)

where 0394 is the Laplacian operator on IRd and V is a continuous function on Under

mild a.ssumptions on V the fundamental solution of equation (1) exists and can be

expressed by the Feynma.n-ha.c for mula ( cf. (?~ ). This fundamental solution is called the

heat kernel.

The purpose of this pa.per is to prove the following theorem, which gives an asymptotic

evaluation of the heat kernel for short time.

Theorem. Let V be a. continuous function on IRd. Assume there exist positive

constants C, Ci and C2 such that

V,(x)+  C~1 + (2)

y.(x)_  (3)

Let q(t, x, y) be the funda,menta,l solution of the heat equation (1). Then v-e have 
.

lim 1 _ i V ((1- s)x + sy} ds, (
1 j o t ) o 0 

v (( 1 - s x + sy s, (4

where is the transition density of a standard Brownian motion.

The main tool for proving this theorem is the Feynman-Kac formula. We recall it for

the rea.der’s convenience.

Let Q = C (0, x), IRd be the collection of all continuous functions from [0,oo) to
lRd. For w E Q, let = "",,(t). Let ,~’t =  t},~’ =  oo}. We

denote by (1PT, x E the unique family of probability measures on (52,,~’) such that

(03A9,,t, Xt, IPx) is a standard Brownian motion. Let y E IRd and t > 0. Put

1 Work supported by the National Natural Science Foundation of China.
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~~9(~~) _ ~s(~’) - ~s n t t( ~~r(~’) - y) , s >_ 0.
Then under IPx the process (Ys, 0  s  t) is a Brownian bridge from x to y on 

and (Ys, t  s  oc) is a. motion with I’t = y. Moreover, under IPx these

two processes are independent. denote by IPx,y,t the distribution of the process
> 0) on (03A9,) under IPx. We call IPx,y,t the (0, x.; t, y)-Brownian bridge measure.

Under mild asumptions on V it that the heat kernel for ( 1 ) can be expressed

by the following Feynman-hac formula( cf.[2,Theorem 3.2~) :

q ( t x, y ) - ?~(t..r, y (e f ° ‘ 1~(Xr) de ]
- 

‘ 

( 5 )
- 

where
a |x - y|2

_ (2rt)-~ exp~- .. ~t }.
are going to prove the theorem. To begin with we prepare a lemma..

Lemma. Let ~~(t ), t > 0} be a family of integrable random variables such that

lim lE(~(t)~ exists and is finite. If
~~0

lim~(~(~)(ef~~E~ -1)~ _ 0, (6)
~~0

then we have

lino ‘ 1 log ~(e‘~(~)~ = (7)
~ ~1

Proof. Since 1 + it  1 + .r + a~( ex -1 ), we have

03BE(~) ~ 1 ~ [e~03BE(~) - 1]  + 03BE(~)[e~03BE(~) - 1].

This together with (6) imply

lim 1 (IE(e‘~(~)J - 1) = (8)

which is equivalent to (7). ~

Corollary 1. If instead of (6) we assume

+ 1)] = 0, (~)

then ( i ) holds.
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Proof. Immediate from the fact that 2014 1)  + 1). leave the proof of

this fact to the reader

Corollary 2. Let {~(t ), F > 0} be a family of integra.ble random variables such that

lim IE[03BE(~)] exists and is finite. If there exists a.n so > 0 such that {03BE(~),0  e  £o} is

uniformly integrable (u.i. for short ) and ~(~)+~  oo for some 6 > 0, then

(6) is satisfied. In particular, we have (7).

Proof. For any c > 0, we ha,ve

~(~)+e~E(~)+  1 e(~+~)f(~)+.
c

Thus, by assumption we can find an ~1 > 0 with ~~  to such that {~(t)+e~~(~)+, 0 
£  is u.i.. On the other hand, we have

~~(t}~ef~(~) ~ ~(~)+eE~(=)+ + 
’ 

Consequently, {~(~)(e~~~~a - l~,e> > e > 0} is u.i.. Therefore, (6) holds, because 

tends to 0 in probability as f tends to 0. ~
Now we are in a position to prove our theorem. Put

03BE(~) = / + s(y - x) + (10)

We may assume C1 ~ C, C2 > 1. Then by (2) and (3) we get

sup |03BE(~)|  Ci / eC2sup0~~~~0|x+s(y-x)+~(Xs-sX1)|2 ds

Thus by Fernique’s theorem ([1]) for sufficiently small eo > 0, {03BE(~),0  e  is

u.i. and we have

lim ae[((é)] = 
i 

Vex + s(y - x)) ds.

On the other hand, by (10) and (2) we have

 e fo 
 ~Xa~2, ,

Thus, once again by Fernique’s theorem, for sufficiently small Eo, ~(‘)+~  oo.

Consequently, in view of (5) and (10) we can apply Corollary 2 to conclude the theorem.
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