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ON THE LÉVY TRANSFORMATION

OF BROWNIAN MOTIONS AND CONTINUOUS MARTINGALES

L. E. Dubins1, M. Émery2, M. Yor3

[...] je vous confie aujourd’hui mes
espérances, qui ne reposent encore
que sur des calculs de probabilité.

. É. Zola

Introduction

If is a Brownian motion started at 0 and its local time at 0,
Lévy’s characterization (see for instance [6] p. 141) implies that

B = L = sgn(B) dB
is also a Brownian motion. In other words, the Lévy trans f ormation T : B --~ B,
defined almost everywhere on the Wiener space W = C(R+,IR), préserves the
Wiener measure ~.

Dubins &#x26; Smorodinsky [3] have established that an analogue of T for coin-
tossing is ergodic. This increases the plausibility of the following conjecture:
(£) The Lévy trans f ormation is ergodic,
that is, the u-field ~ on W of all events a.s. invariant by T is trivial.

Known since the late 70’s, the problem of the ergodicity of T is mentioned as
an open question in Revuz &#x26; Yor [6], page 257.

We shall see that (£) is closely related to the question of knowing which con-
tinuous martingales M = with Mo = 0 have the same law as their Lévy
transform M = f sgn(M) dM. (A discussion of this subject is begun in Exercise
(2.32) page 231 of Revuz &#x26; Yor [6].) Recall that to each continuous martingale M
is associated its quadratic variation (M) ; (M) is the continuous, non-decreasing,
adapted process such that (M)t = limn~~ (Mk2-nt-M(k-1)2-nt)2 . For

simplicity, we shall deal only with continuous martingales verifying Mo = 0 and
(M)oo = oo; such processes will be called divergent martingales. As is well known
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(see [1] and [2]), each divergent martingale M is obtained by time-changing a
Brownian motion, the time-change being given by (M). More precisely, to M is
associated a (unique) Brownian motion ,OM such that Mt = for all t;
this defines a map --~ W transforming P into the Wiener measure ~.
The law of M is characterized by the joint law of ~QM and (M). .

Changing time in the intégral f sgn(M) dM gives ~M = QM as (M) = (M~, ,
M has the same law as M if and only if

.

A sufficient condition is the independence of ,QM and (M). We conjecture that
this sufficient condition is also necessary.

Let us give a name to this conjecture: 

(M) 
A divergent martingale M has the same law as its Lévy tram/oTm M
(if and) only if the processes 03B2M and (M) are independent.

A reason to believe in this conjecture is Ocone’s Theorem A of [5]: : The
independence of pM and (M) is a necessary and sunicient condition for M to have
the same law as all integrals f H dM, where H ranges either over all deterministic
processes of the form H = or over all {-1,1}-valued processes
that are predictable for the natural filtration of M.

The next section gives some preliminary observations about (~C). Then cornes
our main result, the équivalence of and (h1), established, with some further
précisions, in the third section. In the last section, we try to understand (~C)
better, in particular by constructing examples of martingales which are not
identical in law with their Lévy transform. The appendix borrows from [5]
Ocone’s theorem and its proof, with a few remarks.

Preliminary remarks

The following lemma from ergodic theory is well known.

LEMMA 1. - Let (W, G, ) be a probability space and T a measurable tran3forma-
tion of W which preserves . A random variable Z E is a. s. invariant

by T i f and only i f
(YoT, = (Y, 

f or all Y E 
PROOF. - If Z is invariant, Z = ZoT a. s. and (YoT, Z) = (YoT, ZoT’) = (Y, Z)
by the invariance of ~c. 

Conversely, if (YoT, Z) = (Y, Z) for every Y, (YoT, Z) = (YoT, ZoT) and ZoT
is the conditional expectation of Z given T’iç; as Z and its projection ZoT on

have the same L2-norm (invariance of they must be equal..
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LEMMA 2. - With the notations o f the introduction, let S : W --~ ~0, oo~ be
a stopping time for B. The stopped processes BS and BS have the same law if
and only if S is a. s. invariant.

PROOF. - If S is invariant, BS = = (Bs)oT has the same law as B5.
Conversely, if BS and ES have the same law, the pairs (BS, S) and (BS, S)

also have the same law, because S is a function of the path of BS (for instance
S = sup ~t : B~ } ). Now the Markov property at time S makes it
possible to deduce the law of (B, S) from that of and similarly for B;
hence (B, S) and (B, S) have the same law. This gives (Y, = (YoT, for

every Y E L2 ( W ) and S is invariant by Lemma 1..

REMARK. - The Markov property in the above proof cannot be dispensed of:
if the random variable S is not a stopping time, it may happen that BS and
B~ have the same law but S is not invariant. Take for instance any 
random variable S independent of BS and BS have the same law, namely
that of a Brownian motion stopped at some independent time distributed as S. ’

Equivalence of (~C) and (M)

THEOREM 1. - Let M be a divergent martingale. The following three properties
are equivalent :

(i) M and M have the same law;
(ii) (M)~ and (M)) have the same law;
(iii) pM and (M) are conditionally independent given the 03C3-field 03B2-1M (J).

Examples of this situation are obtained by taking (M) independent of if

(£) is true, is trivial and there are no other examples.

PROOF. - Since (M) = (M) and the law of (M)~ depends only on that
of M, (i) implies (ii). Conversely, (ii) =~ (i) follows from M = and

M = °

(ii) ===~ (iii). Let F be a bounded random variable measurable with respect to
o { (M) ~ , t > 0}; there exists a bounded measurable function f on W such that

= f ( pM ). For every g E L2 (W ), using the definition of f hypothesis
(ii) and again the définition of f, one can write

= = = 

and Lemma 1 gives = a.s. So f is J-measurable and coming
back to the definition of f one gets = the desired result.
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(iii) ~ (ii). Keep the same notations and call J’ the u-field 03B2-1M(J). Hypothesis
(iii) gives on the one hand

and on the other hand

~

Since every J’-measurable random variable has the form h(03B2M) where h is J-
measurable, = and we obtain

= 
~

which means precisely that (ii) holds. 1

Recall that a martingale M is called pure if it is divergent and if for each t > 0
its quadratic variation (M)t is measurable for the u-field , s > 0}.
A weaker form of Conjecture (M ) is obtained by restricting to pure martingales

the demand that M ~’~~ M if and only if ,ûM and (M) are independent; since (M)
is measurable with respect to we get the statement:

, 
A pure martingale M has the Jame law as its Lévy transform M (i f and)

~ ~ only if (M) M deterministic.

As will be shown below, (M’) is in fact not weaker than but equivalent to (.NI ).

Similarly, a weaker form of (~C) is obtained by restricting to stopping times the
statement that all random variables on W invariant by T are constant:

(L’) 
On the canonical space W, ’ every stopping time invariant by T is

( ) constant.

THEOREM 2. - The four conjecture3 (£), (£’), (J~I) and {J~l’) are equivalent.
PROOF. - If (£) is true, ~ is trivial and (i) ==~ (iii) in Theorem 1 gives (M). In
turn, (J~l) trivially implies (Jl~f’). The theorem will be proved by showing that

(£) is false ====~ (£’) is false ===~ (J~t’) is false.
Assume (L) is false. On W endowed with Wiener measure, there exists a non-

trivial invariant bounded random variable F. Call B the canonical Brownian
motion on W, B its Lévy and (.~t):~o their natural filtrations.
Since F is a functional of B, the (t)-martingale Mt = has the form

E[F] + f ô Ha dBa with H predictable in the filtration (~’t )t~ o; so M is also a
martingale for and

~(Fpt~ _ = o T : :

the process M is invariant by T. .
Using M, it is easy to construct a finite, non-constant stopping time S invariant

by T, for instance S = t + lr(Mt) where t is large enough for Mt to be non-
constant and r is a suitable Borel set. So (£’) is false too.
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If (,C’) is false, let S be a finite, non-constant, invariant stopping time on
Wiener space. For a > 0, the increasing process

At = + ds

is not deterministic it is also invariant, and (B, A) (w) (B, A); the inverse
of A, obtained by replacing a with is adapted and each At is a stopping time.
Consequently, Mt = is a martingale (for the filtration çt = satisfying
condition (ii) of theorem 1, hence M ~~’~ M. As (M) = A is measurable with
respect to pM = B but not deterministic, M is a counterexample to (M’) and
(M’) does not hold. 1

Some Remarks

a) It can be observed that the stopping time S constructed in the first part
of the proof takes only two values. This leads to another variant of (,C), namely,
there are no invariant stopping times taking exactly two values. Of course, this
just means that each invariant event belonging to some ;:; is trivial. -

b) (~C’) amounts to stating that every non constant Brownian stopping time S
is not invariant. According to Lemma 2, this means that the stopped processes
BS and S = - LS do not have the same law. A sufficient condition is
that the random variables Bs and Es = | - Ls have different laws. Many
stopping times have this property, for instance the first hitting time of a given
level by B, or by (Bj or by L...

However, there also exist many stopping times (for the filtration of B) such
that Bs and Bs are not only identical in law, but a.s. equal; for instance
inf ~t > 1 : : Bt = B= }. This stopping time is a.s. finite since the martingale B - B
is divergent (for its bracket is 4~ dt). -

But a finite stopping time S such that Bs = Bs cannot be invariant unless it
vanishes identically. For in that case Bs = Bs = SoT = BsoT is a function of
B only ; and, since B and -B have the same conditional law given B, Bs must
be its own opposite and Bs = 0, giving Ls = - J9~ = 0 and S = 0. (The
same argument shows more generally that a finite, non-négative random variable
S measurable for  and verifying Bs = 03C6(S) must vanish if 03C6 is a function such
that ~(~) ~ 0 for every x  0.)

More precisely, it can be proved that if S i~ an invariant, finite, positive
stopping time, IP[BS =  1/2. Let indeed A denote the event {BS = Bs}
and suppose > 1/2. Since Bs = Ls and 0, on A one has
Bs = -Bs - Ls and 2Bs = -Ls; this can be rewritten 2Bs = inftS Bt. But

A~ is also larger than one half ~so the event A is not negligible. On
this event, one has on the one hand 2Bs = Is and on the other hand 2Bs = -Ls
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(where Ît = infst Bd and L is the local time at zero of B). To establish the
claim, we shall urove that, if B is a Brownian motion started at 0, the event
{3>0 : : 2Bt = It = -Lt} is negligible; replacing B with -B, dropping the~hats
for typographical simplicity and letting St = B,, this amounts to showing
that

1P ~~t>0 : : 2Bt = St = Lt~ = 0 .

Since both processes S and L are locally constant in the random open set
{t : Bt =~ St and 0}, if equality S = L holds at some time t > 0 such
that Bt = z St, it also holds identically in some neighborhood of t and hence at
some rational t; so we just have to show that IP = L=~ = 0 for each t > 0.

From the scaling property of Brownian motion, this probability does not de-
pend on t; ; hence it is also equal to IP[ST = LT] where T is an exponential
random variable independent of B. Now, the joint law of (ST, LT) is easily com-
puted from excursion theory arguments; in particular it is absolutely continuous
with respect to Lebesgue measure on with identical exponential marginals.
This proves the claim.

c) Still working in the u-field generated by B, notice that (~C) is true if and
only if, for H ranging over a total subset of L 2, IE [H|J] = E [H], or equivalently
by the ergodic theorem

lim 1 nHoTk = IE[H].

We shall use the subset consisting of the constant 1 (for which the above equality
is trivial) and of a,ll multiple Wiener integrals

H = ~0 dBu1 u10 dBu2... / o u,- dBup f (ul, ... , up)
where p > 1 and f satisfies

~0 du1u10du2... up-10dup f2(u1,...,up)  ~ .

This programme can be carried out successfully in the case p = 1. Indeed,
writing = Tk(B) and = Tanaka’s formula gives

= ~(k-1)s = ~(k-2)s~(k-1)s = t0 dBs ~s~(1)s ...~(k-1)s.
o 0 0

Now, if H = dBu f (u), where f E L2, we have

1 n HoTk = f (u) (1 n~u~(1)u...~(k-1)u)
so that

IE [ (
1 n HoTk)2] = ~0 du f2(u) IE [ (1 n ~u~ (1)u ... ~(k-1)u)2].
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For fixed u, is independent of and hence also of all the for m > É;
so the sequence eu , ei~ , ef~ , ... of Bernoulli variables is independent, whence

IE [(1 n ~u~(1)u ... ~(k-1)u)2] = 1 n,
and 1 n £ HoTk does tend to zero.

For random variables H belonging to chaoses of higher order, the same
method, and the well-known isometry between the p~~ chaos and the space of
square-integrable symmetric functions of p variables, reduce (£) to an equivalent
property.

PROPOSITION . - (£) 13 true if and only if for each p > 1

/~ dUi l’~ dU2 ... f fl £f~ )~] # 0 .

1mp

Hence, the first step in that direction would be to take p = 2 and to get a
good estimate of

IE [ (1 n ~u~v~(1)u~(1)v ... ~(k-1)u~(k-1)v)2].
k=1

APPENDIX: Ocone’s Theorem

Ocone’s Theorem A of [5] consists of the equivalence between (ii), (iii) and
(iv) below. His setting is more general than the following rephrasing: he deals
with local martingales (and further extends his results to the càdlàg case).

THEOREM. - Let M be a continuous, divergent martingale with natural filtration
X = . The following five statements are equivalent:

(1) the processes 03B2M and (M) are independent;
(ii) for every F-predictable process H taking values in (-1, 1 ), the pairs of
processes ( j H dM , , (M)) and (M , (M)) have the same law (in particular the
martingale3 j H dM and M have the same law);
(iii) for every deterministic function h of the form ljo,aj - 1a,ce>, the martingale
J h dm ha3 the same law as M;
(iv) for every F-predictable process H measurable for the product 03C3-field
B(ùl+) © u((M)) and such that ~0 H§ dM>s  co a, s.,

IE[exp (1 ) (M) ] = exp (-) ~0H2sdM>s) ;

(v) for every deterministic function h of the form 03A3nj=1 À ; l jo,a; j ,

E ( exp (1 dms) ] = IE[exp (-) .
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Notice that (iii) is a symmetry assumption: given the past of M, the conditional
law of the future incréments is symmetric; (iv) says that, conditionally given (M), ,
M is a Gaussian martingale with variance (M). .

LEMMA 1. - If a right-continuow process X is a martingale f or some (non
necessarily right-continuous) filtration it is also a martingale for its

right-continuous enlargment 

PROOF. - When e > 0 tends to 0, tends to X, in Li by uniform
integrability; so, for s  t, = lim = o.

LEMMA 2. - Let {3 be a Brownian motion with natural filtration B and G a
u-field independent of ~Q. If a process H taking values in ~-1,1} is predictable
f or the filtration ~ defined by Et = V G), the process  H d03B2 is a

Brownian motion independent o f g. 

PROOF. - Lemma 1 and the independence of ~3 and g imply that Q is a

£-Brownian motion. By Lévy’s characterization, f H d~i is also a £-Brownian

motion; so it is independent of £o, hence of . 1

PROOF OF OCONE’S THEOREM. - We shall show that (i) ==~ (ii) =~ (iii) ===~ (i)
and (i) ==~ (iv) =~ (v) =~ (i). Implications (ii) =~ (iii) and (iv) =~ (v) are trivial.

(i) =~ (ii) and (iv). We suppose that,0 = pM and (M) are independent. Let
Ai = inf ~s : : > t}, so that, with the convention Ao- = 0, its left-limit is
At- = inf {s : {M)s > t}; dénote by B the natural filtration of 03B2 and by ~ the
right-continuous enlargement of the filtration f3t VQ( (My ). If T is a F-stopping
time, is a £-stopping time since .

{ (M)T fi t} _ ~T  At } c n C n .

E>o ~>o

If H is a bounded, F-predictable process, Kt - is bounded and ~-

predictable and fo H, dM.. _ Ku d03B2u (when H = with T a F-

stopping time, K = and both integrals agrée since MT^t = ;
the général case follows by a monotone class argument). 

~~’

If furthermore H takes values in {-1,1}, Lemma 2 with Ç = o((M)) says that
~ = f K d,0 is a Brownian motion independent of (M) (as is /~). Consequently,
both processes M = and f H dM = have the same conditional law

given (Af); this proves (ii). ,

Taking now H bounded, .~ predictable, ~fi(IR,+) ® and
such that ~0 H;  oo, K is also [B(IR+) ~ 03C3(M>)]-measurable,
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This proves (iv) when H is bounded; the general case follows by taking limits.

(iii) =~ (i). Let s  t. Since M’ = f ~~,,~)~ dM has the same law as
M, the triple (M~, Mt-M.) has the same law as (M’’, (M’~, But
the stopped processes Md and M’d are the same, the quadratic variations (M~
and (M’~ are equal and M: - Md = -(Mt - M.), yielding

(Mj, Mt-Md) ~~’~(M°, (M~, -(Mt-Ma)~ .

Denoting by G, the u-field generated by the processes M’ and (M~ and the null
events, this implies that M is a martingale for the filtration g, whence also for
its right-continuous enlargement ?~l (Lemma 1).

The random variables At - inf {s : : > t} are stopping times for the
filtration H (they are H0-measurable!); the stopped martingales MAt are squàre-
integrable and one has = t. Introducing the filtration JCt = HAt and the
Brownian motion ~i = pM, one can write

_ ~~~~Mj~c - MA.IxA.J = o .

Consequently Q is a K-martingale, hence (Lévy’s characterization) a K-Brownian
motion; so it is independent of K0, and a fortiori of go = u( M>).

(v) =~ (i). Let B be a Brownian motion independent of (M). Applying (i) =~ (v)
to the martingale N = B(M) and remarking that, since (M) = (N), the right-
hand side of (v) is the same for M and N, we see that M and N have the same
law. Consequently (M~) and (~N, (N~) = (B, (M)) also have the same law
and ~M is independent of ~M~. 1

REMARKS. - a) The hypothèses that B is the natural filtration of ~Q in Lemma 2
and :F that of M in (ii) cannot be dropped.

If one supposes. only that B is a filtration such that ,Q is a B-Brownian motion,
Lemma 2 becomes false: Take a Brownian motion B with natural filtration B,
call Q = J sgn(B) dB the Lévy transform of B and ~ the u-field generated by
sgn(B1). Now H = sgn(B) is B-predictable and a fortiori £-predictable, where
£t = V ~). But f H d~ = B is certainly not independent of sgn(Bl ).
(What makes this example work is that for t  1 both random variables sgn(Bt)
and sgn(B1) are independent of 03B2, but the pair is not.)
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Similarly, the theorem becomes false if .~’ is no longer the natural filtration
of M, but only some filtration for which M is a martingale. In that case, (i),
(iii), (iv) and (v) are still équivalent, but (ii) may become stronger, as shown
by the following example. Take as above B with natural filtration B and Lévy
transform 03B2; define an increasing process A independent of 03B2 by At = t for t  1
and At = 1 + + for t > 1, where u and v are strictly
positive real numbers. Our martingale verifying (i) will be the Lévy transform
Mt = of BAt; as the latter is a martingale for the filtration so is

also M. The process

sgn(Bt) if t  1
Ht = sgn(B1) sgn(BAt) if t > 

1

is F-predictable, but the random variables

M2 = {03B21+u if B1 > 0 and 20 HsdMs = B1+u if B1 > 003B21+v if B1 0 2B1 - B1+v if B1 0

do not have the same law in general. Indeed, on the one hand the law of
M2 is symmetric (Q is independent of sgn(Bl )) and on the other hand, if
u is chosen large and v small, > 0 and Bi > 0] is close to 1/4 and
IP[2B1 - B1+v > 0 and B1  0] to 0, yielding by addition

P [20 Hs dMs > 0] ~ 1 4 ~ 2 1=1PM 2 >0 . .
This shows that the filtration .~’ is too large for (ii) to hold.

b) If M is a martingale on a probability space (03A9, A, IP) f or a filtration
F = and if C is a sub-03C3-field of A, then M is "till a martingale for
the enlarged filtration V C) i f and only if Hd = 0 f or each t

and each simple, .~’-predictable process H verifying° ~H~ = 1. Indeed, if M is a
martingale for (Ft V C), so is also f H dM, yielding IE[t0 Hd V C] = 0.
Conversely, if the condition holds, E = 0 for each C E C and each

Fs-measurable U with values in {-1,1}; but for A E Fs, 21A = + 1 is
the sum of two such U’s, whence = 0, and M is a martingale
for the large filtration.

c) If ~’ = the natural filtration of some Brownian motion B and if C
is a non-trivial Jub- 03C3-field o f VtFt, no F-Brownian motion can be a martingale
f or VC). For such a Brownian motion 03B2 would have the form J H dB for an F-
predictable H with =1; 50 B = f H d,0 would also be a V C)-martingale,
hence a V C)-Brownian motion and would be independent of .~o V C = C. 

d) Yet, keeping the notations of c), there exist a non-trivial sub- u-field C o f
and a process that is both a (Ft)- and a (Ft V C)-martingale, for instance

the u-field C = and the process f h dB, with h = ~~1~~). This example
generalizes as follows: Let A be a (£ )-predictable set and assume, for simplicity,
that (almost) all sections of its complementary have infinite Lebesgue
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measure. Let M = f 1A dB, N = J 1Ac dB and dénote by C the u-field generated
by the Brownian motion Time-changing by (N) = f 1Ac dt the predictable
représentation property with respect to pN shows that every square-integrable,
C-measurable random variable assumes the form

U = IE[U] + À Ka lAc (s) ,

where K is predictable and such that  oo. This easily
implies that M = f ]lA dB satisfies the condition in b) above, showing that M is
a V C)-martingale.

It seems worthwhile to présent such examples hère as they play an important
rôle in some martingale proofs of the Ray-Knight theorems for Brownian local
times (see, for instance, Exercises (2.8) and (2.9) pages 426-427 of Revuz &#x26;
Yor [6] and Jeulin ~4~ ).
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