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A Critical Function For The Planar Brownian Convex Hull

T.S. Mountford

Abstract: We prove that if the origin is translated so that the real axis is tangen-
tial to the (random) convex hull of a planar Brownian motion, touching at the ori-

gin, then for each positive ~ (03C0 2 + ~)|x|log3(1/|x|) log(1/|x|) is an upper function for the
hull but (03C0 2 - ~|x|log3(1/|x| log(1/|x|) is not.

Introduction

This note is concerned with the continuity properties of the convex hull of
Brownian motion. This random set has been studied by Evans (1985), Cranston, Hsu
and March (1989) and more recently by Burdzy and San Martin (1989). It is from the
latter paper that most of the ideas in this paper are taken as well as the problem
addressed. Consider a planar Brownian motion {(X 1 (t), t > 0). Let be the
time that the minimum value of X2 is achieved over the time interval [0, 1]. If C is
the convex hull of the Brownian path over the unit interval translated by
- then the x-axis is tangential to C at the origin. Locally at the ori-
gin the boundary of C may be represented as (x,f(x)) where f is a positive convex
function. The first two papers quoted show that f is C 1. Cranston, Hsu and March
(1989) showed that a non-negative function g was a lower function for f if and only if

 ~

o+

and that in this case

liminf f ( x ) = ~.
g (x) )

Burdzy and San Martin (1989) examined the limsup behaviour of f and proved that

limsup f (x ) = oo
xo 

and

limsup 

We use their approach to show

Theorem

The local representation of C, (x,f(x)) satisfies

limsup f (x ) _ ~t12.
The lucidity of this paper has been enhanced by the e-mail of K. Burdzy for which theauthor is grateful.
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Notation and Summary of Toots taken from Burdzy and San Martin

Throughout the paper the plane R 2 will be identified with the set of complex
numbers. So i will refer to the point (0,1). Occasionally we will write a point in
polar co-ordinates. We hope it will be obvious which system is in effect and no con-
fusion will result. We will write cn - pn to mean that there exist finite, strictly posi-
tive k and K so that kcn  Kcn for all n. We will treat stopping times as random
variables of various different processes. So we may define for example for a generic
process X, the stopping time S to equal inf(t: IX(t)I = 1}. Then given two processes

and Z Z(t ), will be the position at which Z 1 first hits the unit circle while
is the position at which Z2 hits the unit circle.

The quantities PX [A ] will refer to the probabilities of event A for an h-process
beginning at x, while Px [A ] will refer to the probability of A for an unconditioned
Brownian motion beginning at x. Typically when P;[A] is written the event A will be
written in terms of a process already known to be an h-process and so the "h" suffix
will be strictly speaking superfluous, nonetheless we hope its presence will make for
easier reading. will refer to probabilities for two independent h-processes
beginning at x and z respectively.

For our purposes, the most important part of the approach of Burdzy and San
Martin (1989) was the proof of Lemma 2.1. which showed that for local properties of
C we could instead consider C, the convex hull of the paths of two independent h-

processes Yh and Yh2, beginning at i for h(x,y) = ~c(x 2 y + Y 2) These h-processes are
more commonly known as Brownian motions conditioned to exjt H, the upper half

plane, at the origin. Note this is not the fact proved in Lemma 2.1.

The following is essentially Lemma 1.1 of Burdzy and San Martin (1989).

Lemma One

Let L be a line through the origin whose slope is ax where a is in the interval
(0, 1/16). Let Br be the ball centered at the origin and radius r. If T is the first hit-

ting time of L then

Ph . [ 1 Yh (T )-ri I  r l2] ~ 

Proof
A standard h-process identity gives

I  r !2 = E ‘ h (Y T ), I Y (T )-ri I  r 12] 1 P ‘ [ I Y (T )-ri I  r 12],

where Y is an unconditioned planar Brownian motion, initially at i.

For the upper bound of our lemma, we 1 simply note that
I  r l2] _ r .

For the lower bound we remark that (by the quasi-stationary behaviour of 1-
dimensional Brownian motion in an interval) as r tends to zero the distributions of

arg(Y(T)) conditioned on (Y(T) L} converge to a distribution with strictly positive
density on See Ito and McKean(1965), page 31, for details.
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We prove similarly the following reformulation of Lemma 3.2 of Burdzy and San-
Martin.

Lemma Two

Let L be a line which makes angle a with the real line for a in the interval (0,
1/16) and which intersects the x-axis at the point (r,0). If T is the first hitting time of
L~B2r, then

Ph [ I  r 12] ~ 

Scction One

We prove the theorem by splitting it up into two propositions. In this section, we
prove the first proposition.

Proposition One
Let (x,f(x)) be a local representation of C at the origin.

limsup f(x) |x| log3(1/|x|)[log (1/|x|)]-1 ~ 03C0/2.
Proof
Fix y > 03C0/2. Let e be a small positive number so that y > ?c/2(l + 2~)2. Let

rk = e-(1+~)k and Lk be the line {z: arg(z) _ 03C003B1k _ . For a process Y

the stopping time Tk will be the first hitting time of The event defined
to be I or I Yh (Tk ) I > Note that if Aj occurs then C contains
the line segment from the origin to So for  x  rk we have

, f (x ) 
L ( 1+~)k j

For k large, enough the right hand side will be less than i )
log(1/|x|)

Now by Lemma One and the independence of Yh and Yh2, the probability of Af is
less than (Ck~l+E)~2)2 and the Borel-Cantelli lemma enables us to conclude that Ak
must occur for all k large enough and therefore for all x small enough

~  I )
log(1/|x |)

D

Section Two

In this section we wish to prove the reverse inequality to that of Proposition One:

Proposition Two
Let (x,f(x)) be a local representation of C at the origin. If y  x/2, then

limsup f(x) |x| log3(1/|x|)[log (1/|x|)]-1 > 03B3
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Before embarking on the proof proper we will need some preliminary lemmas. We fix
for this section e > 0 so that x/2 > (1+~)~y, and we define (or redefine) the quantities

rj . = ~~; ~ a , - , ~12; R ~ = ~ ~ ~ ~

L j is the line through the points (R j ,0) and (rj ,aj),
Tj is the first hitting time by a process of Lj~Brj~R where R is the real
line.

AJ is the event ( r~12} n I  A-/2).
We now make the following observations
1) The angle made by the line Lj with the real line is decreasing in j and equal to
aj + 0 (a~ ).
2) For j large enough, and for all positive m, the line Lj+m meets the line Lj inside
the disc Br.. .

Lemma Three

.. 

The conditional probability that the point (r~ ,a~ ) is not in C given that A~ occurs,
C I A~ ], is bounded below by a strictly positive c.

Proof
First note that C I A J ] >_ is not hit by Yh or Yh ] = Pih[Lj is not

hit by Y~ ]2. Secondly note and arg E (~t12,2~13) are

bounded away from 0. We now investigate the term is not hit by 
Let the stopping time Sj be defined to be inf(t: X (t ) E R or L~ or

I X (t ) - (Rj,0)| I = 2Rj } where again R is the real line. It is trivial that Pih [L j is not

hit by Yh |arg(Y1h(Sj)) E (03C0/2,203C0/3)] > k for some strictly positive k. Equally by our
second remark it is clear that

Ph [arg (Sj)) E (03C0/2,203C0/3) I is of the order 
h (R f i ) P i[argX(Sj) E (03C0/2,203C0/3)]
h 

for an unconditioned Brownian motion X. The latter term is of the order

rj Rj[Rj rj]1 a-03B1j - 1
This proves the lemma.

D

Lemma Four

Let j and m be positive integers:

i) Pih[Aj] ~ 1 j1-~

ii) Pih[Aj+m |Aj] - [1 (j+m)1-~]1-(1+~)-m
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Proof
The lemma follows simply from Lemma Two and the Strong Markov Property.

D

In exactly the same way, the corollary below follows.

Corollary
Let z be a fixed point in the upper half plane with arg(z) E (7C/2,27C/3). There

exist finite strictly positive C and c so that for j large enough and all positive m we
have

i) Pzh[Aj] > c j1-~

ii) Pzh[Aj+m | Aj]  C (1 (j+m)1-~ )1-(1+~)-m
Proof of Proposition Two
For a process X define the stopping time Dn as inf{t: IX(t)I = rn }. For the two

h-processes Yh and Yh define the filtration {Fn }n~ by
Fn = t _ Dn) V 6(Yh (t ), t _ Dn).

Given Corollary One and the fact that before times Dn the Yh and Yh processes are
bounded away from the x-axis, it is easily seen that for E

(~12,2~c13) and j large enough we have

i) 

r 
~ 

- ii) .J~~,~JC~~~J . .
1

Now take n j = U 1-E ]. We can choose j large enough so that for all k,1 in [j, 2j]
(k  1) we have

a) Ph[Ank|Fn] > c’ j

b) Ph[Anl~Ank | Fn]  C’ j2 .

for strictly positive c’ and C’.
2’ 

°

This means that 

if we define the 
random 

variable Wj , then . for j large enough
E IW; ’ Fn ] > c 

’ 

and E [W2j l Fn ]  C ’. This implies that there is a 6 > 0, so that
whenever and both have argument in the interval (03C0/2,203C0/3),

I F n] > b]. Thus with probability one limsup Ph . I F n] > S. This in
j>n .. , j>n 

turn implies that Pi,ih[ limsup A.] = 1. By Lemma Three this means that

C for infinitely many j ] = 1, which completes the proof of Proposition
Two and hence the proof of the Theorem. D
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