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The excessive domination principle is equivalent
to the weak sector condition

ZORAN VONDRCAEK

University of Florida and University of Zagreb

1. Introduction.
Let be a transient Hunt process with lifetime ( on a locally

compact space (~,~*) with countable base. Assume that there is an excessive reference
measure also denoted by dx and a potential kernel u = u(x, y) such that for all
nonnegative Borel functions f .

(1.1) Uf(x) = Ex [~0 f (Xt) dt = 
Let(Pt) be the transition semigroup of X. A Borel measurable function s > 0 is called

excessive if

(1.2) Pts  s and lim Pts = s.

An excessive function s is called a natural potential function, if s is finite and

(1.3) lim Pr = 0

for every x, whenever {Tn} is an increasing sequence of stopping times with limit T > (
almost surely P~. Here = Ex  (].

It is well known that each natural potential function s is generated by a unique
integrable natural additive functional A, i.e.,

(1.4) s(x) = 

Let us recall the definition of the energy of the natural potential function. Details
may be found in [6]. Definitions given there are for almost everywhere finite class (D)
potential functions. Since every natural potential function is of class (D), the results are
applicable here as well.

The mass functional of an excessive function s is defined as

(1.5) L(s) = sup s AU  ~ .
Let s be a natural potential function and A the corresponding natural additive func-

tional. If p = E’(A~) is finite, then p is necessarily a natural potential function. If

L(p)  oo, we say that s has finite energy and put

(1.6) ~s~2e = L(p).
If r and s are natural potential functions of finite energy generated by natural additive

functionals A and B, respectively, their mutual energy is defined by

(1.7) (r, s)e = 

Let R denote the linear space of differences of natural potential functions of finite
energy. The above definition extends to R.

Let us now introduce the excessive domination principle.
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(ED): there exists a positive constant K such that for every s E n, there exists a
natural potential function p satisfying  p and 

,

In [7] it was proved that if (ED) holds, then Hunt’s hypothesis (H) holds, i.e., every
excessive function is regular.

In this note we give a sufficient condition such that (ED) holds. We prove our result in
the setting of the dual Hunt processes as described in [I-VI]. We show that the excessive
domination principle is equivalent to the weak sector condition (S) defined as follows:

(S): for each signed measure v such that  oo and for each positive measure

p, (Uv, ~c)2  M(Uv, ~c) where M is a positive constant not depending on p and
v.

This result gives the potential-theoretic characterization of the weak sector condition.
The main tools in proving this result are capacitary inequalities for energy established

by M.Rao in [7]. He proves that the energy of a natural potential function is comparable
with its capacitary integral. Precisely,

1 2 ~s~2e ~ ~0 tC(s > t) 2~s~2e

(see Thm.3.1). He also proves that for s E R the capacitary integral f~ > t) dt
is finite and that there exists a natural potential function p dominating Isl such that

,~p > t) dt  where m and M are positive constants not depend-
ing on s (see Theorem 3.2).

The missing link was the estimate of the capacitary integral of s E R in terms of the
energy of s. In Proposition 2.2 we obtain this estimate for the not necessarily Markov
kernel U which satisfies the weak sector condition and both U and !7 satisfy the weak
maximum principle. We use the symmetric kernel V = U + C/ and modify the argument
from [5].

In Section 2. we provide the details of the estimate, while in Section 3. we recall all
necessary results and obtain the announced equivalence.
2. The Estimate.

Let E be a locally compact space with countable base. A kernel on E is a nonnegative
lower semi-continuous function u defined on the product E x E.

For a positive Radon measure p we define

(2.1) = and = 

We also define and for a signed measure p. For signed measures p and v let
us denote

(2.2) v) = whenever  oo.

Then 
/’/

(7~) = (UI~~ ~)~

Let v(x,y) = u(x,y) + u(y,x) and Vu(x) = f Hence V = U + U and v
is the symmetric kernel.

We define the capacities with respect to U and V as follows: for A C E,

(2.3) CU(A) = ~C measure with compact support S(p,) C A
and U~c  1 on ?(~)})
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(2.4) CV(A) = measure with compact support S(p) c A
and Vp  1 on 

It is well known that such capacities are inner regular (e.g., [2] p.153)

(2.5) = c A, K compact}
and similarly for V.

From now on we assume that U satisfies the weak sector condition (S) as defined in
Section 1.

The weak sector condition immediately implies the positivity of U: if v is a signed
measure such that  oo, then (Uv, v) > 0. Thus both U and U are positive.
Therefore V is also positive and by using symmetry we have

(2.6) 
for ~c, v signed measures.

For each compact set K there exists a positive measure A with the support in K such
that

(2.7) (VA, A) = Cy(K) = a(K), VA  1 in and VA > 1 Cy - a.e. on K

(e.g., [2] p.159). A is called the equilibrium measure for K.
It is necessary to compare the capacities with respect to U and V. The following

lemma shows that they are comparable.
LEMMA 2.1. . For every set A

(2.8) Cy(A)  CU(A)  2Cy(A).
PROOF: By the inner regularity of Cu and Cv it is enough to show the inequalities for
compact sets.

Let K be compact, p a measure such that S(p) C K and Vp  1 on Then

Up  1 on so trivially  Therefore, if = 0, then Cy(K) =
0.

Assume that Cu(K) > 0; then there is a measure on K such that  1 on S(p)
and p(E) = p(K) > 0. For the symmetric kernel V,

Cy(K) = 

where v ranges over all measures concentrated on J~ ([2]). Let A = then (VII, v) _
(VA,A) = 2(Ua, a) =  oo which implies > 0.

Hence, the sets of Cv-capacity zero are precisely these which are of Cu-capacity zero.
Now we show the second inequality in (2.8). We may assume that CU(K) > 0. Let

~ be a measure on K such that U p, ~ 1 on S(p) and let v be a V-equilibrium measure
of A~. Since _ (1, ~)  oo, ~u does not charge sets of Cu-capacity zero, and hence
Cy-capacity zero. Therefore

p,(E) = (1 ~ ~)  _ (vv, v) 2 - 2 f 2(v~~ ~)l 2 _ 
so  2CV(K). Hence CU(K)  2Cy(K).1

For the following result we need an additional assumption on U. We assume that
both U and !7 satisfy the weak maximum principle:

(M~r): there exists a positive constant A such that for every positive measure p with
compact support, !7~  1 on implies !7~  A everywhere.



469

(Mw) is defined similarly. Then V also satisfies the weak maximum principle (with
constant 2~4).

Now we prove the main estimate.

PROPOSITION 2.2. Assume that (S),(Mw), (Mw) hold for C/. Let 03BD be a signed measure
such that J7~ ~ 0 and

(2.9) ~0 tCU(U03BD > t) dt  ~.
Then

(2.10) ~0 tCU(U03BD > t) dt ~ 24M A2(U03BD,03BD).

PROOF: For each integer n let .B,, = {U03BD > 2"}. Then

(2.11)

/°° > ) ~ = y~ / > ) ~~0 

~ 03A3 2n2n-1 tCU(U03BD > = 3 8 03A3 22nCU(Bn)
Similarly

(2.12) 
o 

~

Let e > 0. For each integer ~ let ~ be a compact subset of ~ such that
(~) 
where 03A3n 22n~n  e.

Let ~ beaV-equilibrium measure of ~, i.e. ~ is a positive measure on ~,
= and 1 on By the weak maximum principle  2A

everywhere. Define the measure /~ as 
~ ~ 2014

~.i4) 
n

Then

(2.15) 
n m

~ 2~ E 2~ ~ 
" " m~n

= 
= 4A 03A3 22nCV(Kn).

" n

Using (2.11), (2.9) and Lemma 2.1, we get  oo.
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On ~n we have Uv > 2". Hence

= ~2~(1,~) = 
n n n

~ = 

n

= M 2(U03BD,03BD)1 2(V , )1 2 ~ 22MA(U03BD,03BD)1 2 [03A322nCV(Kn)]1 2.
Therefore

(2.16) ~ v).
n

Further, by (2.13),
6

n n

Using the above, (2.16), (2.12) and Lemma 2.1 we get

(~)
. 

>  

~0 ~

 3 + 3e ~ v) + 3e.
n

Thus (2.10) holds, t
Now we show that the excessive domination principle for this situation implies the

weak sector condition.

PROPOSITION 2.3. Assume that for each signed measure v such that (!7H,H)  oo,

there exists a positive measure A satisfying UA and  M(Uv,v), where
M is a positive constant not depending on v.

Then the weak sector condition holds.

PROOF : Let v be a signed measure and  a positive measure. Then

  (~~)~   

3. Proof of the equivalence.
In this section we assume that X and X are transient Hunt processes on the LCCB

space (E,~) with respect to a u-finite excessive measure ~(d:r) as described in [1-VIJ.
Let be the potential density of the potential operator U which is excessive in the

first variable and coexcessive in the second variable. We assume that U and !7 satisfy
conditions (2.1), (2.2), (4.1) and (4.2) from [1-VI]. Then u is a lower semi-continuous
function. By Proposition 2.10 in [1-VI] every natural potential function s is a potential
of measure. 

, ~x rr~ rr j rr
We assume that U satisfies the weak sector condition (S). Then U and U are pos-

itive kernels. By Theorem 3.2 in [3], both U and C/ satisfy the maximum principle (in
particular, hypothesis (H) holds). Therefore, we may apply the results from Section 

2.



471

In this setting the energy of a natural potential function s = Up is simply 2(Up, p)(see [6]).
In [1-VQ the capacity C(B) of a relatively compact Borel set B is defined as

(3.I )
C(B) = sup(p(E); p positive measure with support B and Up  i everywhere ).
By the maximum principle, C(B) = Cu(B) where Cu is defined in Section 2.
The following two theorems are Theorem 2.4 and Theorem 2.5 from [7].

THEOREM 3. I . Let s be a natural potential function of finite energy. Then

(3.2) )l1811i  ~0 tC(s > t) dt  2~s~2e.
THEOREM 3.2 . Let F be a Borel measurable function. Put g(z) = where F* =
supt>0 |F(Xt)|. Then g is excessive, g > )F | except for a semipolar set and

(3.3)  16 ~0 tC()F) > t) dt.
Further, if F is finely lower semi-continuous, then g > ) F) everywhere and

(3.4) ~0tC(|F| > t) dt  2~g~2e.
By Theorem 3.1 we get that for s = s1 - s2 e R

(3.5) ~0 tC()s) > t) dt  oo.

Indeed, )8)  81 + 82 and 81 + 82 iS the natural potential function of finite energy.Hence

~0 tC()s) > t) dt  ~0 tC(s1 + s2 > t) dt ~ 2))si + s2))$  oo °

We are now ready to prove
PROPOSITION 3.3. Let s e R and assume s > o. Then there is a natural potentialfunction p of finite energy such that 

(3.6) 8 ~ P and ~p~2e  1l1811i>
where K is independent of s .
PROOF: BY the remarks above, 8 * UV for a Signed measure v and ~0 tC(U v > t)  oo .Using Proposition 2.2, we get

(3.7) ~0 tC(U03BD > t) dt  24M(Uv, v) = °

is finely continuous, we may apply the second part of Theorem 3.2. Thefunction p(x) = EX(s*) is finite, p ~ s = Uv and

(3°8)  16 ~0 tC(U03BD > t) dt.
p is necessarily a natural potential function, so by combining (3.7) and (3.8) we get(3.6) with K = 172M..
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We have obtained the excessive domination principle for s E R nonnegative. To
extend the result to an arbitrary s E ?Z we need the following result which is proved in
[4] (see Theorem 5).
PROPOSITION 3.4. Let s E 71. Then u = E R and ~u~e  

Using the last two propositions, for each s E 7l there is a natural potential function
p such that Is  p and ~ Together with Proposition 2.3 this gives
THEOREM 3.5. Excessive domination principle (ED) is equivalent to the weak sector
condition (S).
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many inspiring discussions. Without his help this note would have never been written.

REFERENCES

1. R.M.Blumenthal and R.K.Getoor, "Markov Processes and Potential Theory," Academic Press, New
York, 1968.

2. B.Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215.
3. J.Glover, Topics in energy and potential theory, in Seminar on Stochastic Processes (1983), 195-202,

Birkhäuser, Boston.
4. J.Glover and M.Rao, Symmetrizations of Markov Processes, Journal of Theoretical Probability 1

(1988), 305-325.
5. K.Hansson, Imbedding theorems of Sobolev type in potential theory, Math.Scand. 45 (1979), 77-102.
6. Z.Pop-Stojanovic and M.Rao, Convergence in Energy, Z.Wahrsch.verw.Geb. 69 (1985), 593-608.
7. M.Rao, Capacitary inequalities for energy, Israel Journal of Math. 61,No.2 (1988), 179-191.

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA


