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INTEGRATION OF THE OPTIMAL RISK IN
A STOPPING PROBLEM WITH ABSORPTION

NICOLE EL KAROUI IOANNIS KARATZAS*
Université Pierre et Marie Curie Columbia University
Laboratoire de Probabilités Department of Statistics
4, place Jussieu - Tour 56 619 Mathematics Building
75252 Paris Cedex 05 New York, N.Y. 10027
Abstract

Integration with respect to the spatial argument of the optimal risk in a stopping
problem with absorption at the origin, yields the value function of the so-called “reflected
follower” stochastic control problem and provides a precise description of its optimal
policy.

1. INTRODUCTION

In the articles (5], [2] we studied the Reflected Follower stochastic control problem
with state process

(1.1) Xi=z+W:— &+ Ky 0<t<r,

where z > O is an initial position, W is a standard Brownian motion and ¢ is a
nondecreasing process; given (z,W) and £, the additional term K in (1.1) represents
the smallest among all nondecreasing processes that guarantees

X; >0 YV 0<t<r

a.s. The control problem is then to choose £, so as to minimize the expected cost
kit o
(1.2) J(&r z) = E[/ h(r +t,X;)dt + / f(r+t)dé& + 9(Xr—r)]
0 [0,r—r)

for r € [0,7], continuous f(-), and suitable convex functions A(r, -), g( ).
It was shown in [5] that the value function
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possible, is gratefully acknowledged.
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(1.3) V(r,z) = ilflf J(&r,x)

of this problem is differentiable in the spatial variable z, with gradient equal to
(1.4)

A oAS(z)
u(r,z) = aesi?rf—r) E[/O he(r +t,z + W;)dt + f(r + o) 1{o<s(z)A(r—r)}

+g(z+W,_,) l{a.=.,._,-<s(z)}] ’

the optimal risk tn a stopping problem for W with absorption at the origin at the time
S(z) = inf{t > 0; z+ W; = 0}. In [2] we studied the finite-fuel version of the reflected
follower problem (i.e., under the additional a.s. constraint ¢,_, <y, for given y > 0),
and related it to a family of optimal stopping problems similar to (1.4).

The methodology of [5] (also adopted in [2]) had the control problem of (1.2), (1.3)
as its starting point, and used a technique of “switching paths at appropriate random
times” to compare expected costs at neighbouring points, to differentiate V(r, - ), and
finally to obtain the identity

(1.5) Ve(r,z) = u(r,z) .

We shall follow the opposite approach in the present paper; we shall start by
studying in detail the problem (1.5), whose solution is typically given in terms of a
moving boundary s(-), in the form: “stop as soon as the absorbed process (z +
Wi) 14t<s(z)} exceeds s(r+t)”. By integrating directly suitable expressions for the
optimal risk u(r, - ), we arrive at the relation (1.5) and at the representation

V(r,z) =E[/T—r h(r+t,s(r+t) Az +W|)dt + g(|lz+W,_,|)
(1.6) ° .

‘/or £+ )|z + Wl — sr + 1))t |

for the value function of (1.4). In particular, we evaluate V(r, - ) along the moving
boundary s(:) as

(1.7) V(r,s(r)) = /;T h(0,s(0))d0 + g(s(r)) + f(r)s(r) — f(r)s(r) + /rf f'(0)s(0)d0 s

an expression which coincides, in the case of a moving boundary of bounded variation,
with “the cost of a deterministic ride along s(-)”.

We also prove the optimality of the policy that mandates reflection of z+W at
the origin and along the moving boundary, with immediate boarding of the latter when
to the right of it. The approach is very direct and elementary; it avoids completely the
use of analytical tools (such as variational inequalities or free boundary problems), even
the use of the change-of-variable formula for semimartingales.
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2. THE STOPPING PROBLEM

Consider a finite time-horizon 7 > 0 and three continuous functions f :[0,7] —
[0,00), g : [0,00) — [0,00), h:[0,7] X [0,00) — [0,00); both f,g are continuously
differentiable, and so is the function h(t, -) for every t € [0,7]. In addition, we assume
that the following conditions are satisfied:

(2.1) g(0) 20, hy(t,00>0 ; V¥ te[o,7]

(2.2) g(), h(t,”) areconvex ; V te[0,7]

(2:3) g(=x)<f(r) 5 VY zel0,00)

(2.4) ha(t,z) + ¢ (2) < K exp(uz®) ; ¥ (t2) €[0,7) x [0,00)

for some finite constants K >0, x>0 and v € (0,2).

Let us also consider a complete probability space (f,7,P) , rich enough to
support a Brownian motion W = {W;; 0 < t < oo}; this process is adapted to
a filtration {#}, which is assumed to satisfy the usual conditions. For any given
(r,z) € [0,7] X [0,00), let S(r —r) denote the class of {%} - stopping times with
values in [0,7 —r] and

(2.5) S(z) =inf{t > 0; z+ W, =0}

denote the hitting time of the origin by the Brownian path started at z. We shall study
the optimal risk
(2.6)

oAS(z)
u(r,z) = inf E[/ he(r+t,z+ W;)dt + f(f +0) 1{¢,<s(,),\(.,._,.)}
0

oeS(r—r)

+9 (2 +Wr—r) Lig=r—r<s(ay]

of a stopping problem for the Brownian motion z + W with absorption upon hitting
the origin, running cost h, before termination, cost f of stopping before running out
of time or being absorbed, and cost g for exhausting the time-horizon without having
hit the origin.

The assumption (2.2) implies, in particular, that u(r,-) is nondecreasing; it will
be assumed throughout this paper that the continuation region

(2.7) € £{(r2) €[0,7) x (0,00); u(r,z) < £(r)}

for this problem is actually of the form

(2.8) C={(rz); 0<r<r, 0<z<s(r)}

for a continuous function s:[0,7) — (0,00), and that the stopping time

(2.9) o(r,z) =inf{t e [0,7—r); z+Wy>s(r+t)}A(r—r)
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is optimal for the problem of (2.6). We shall denote by s(r) the limit lim,t, s(r).

3. REPRESENTATION OF THE OPTIMAL RISK

In order to cast the optimal stopping problem of (2.6) into a more conventional
framework, we introduce the absorbed process

(3.1) A,(z)={”t&Wt Oféz(%x)} ,

where A isa “cemetery state” isolated from R*; the convention here is that g'(A) =

hz(t,A) =0; V 0<t<r. We also introduce the functions

(3.2) G(r,z) £ E[/OT—' ha(r +t, A(z))dt + ¢ (Ar_r(z))]

(33) H(r,z) 2 B[ fo T halr 4+ Ad@)dt + (6 (Ar—r(2) — F(1) Lsantronysoy] -

Obviously H(r,z) =0 for r =7 or z =0, whereas
(3.4)

(r—r)AS(z) , ,
H(r,z) = E[/o {ha(r +t, Ae(2)) + f (r + t)}dt + g (Ar—r(2)) — f(7 A (r + S(2)))]
= G(r,z) — f(r); for (r,z)e[0,7) x (0,00) .

It develops then, by a use of the strong Markov property, that the function
(3.5) v2G-u

admits the representation

v(r,z) = “ssgp_r) E| hz(r +t, As(z)) dt +
{9 (Ar—r(2)) = f(r + 0)} Lio<s(e)aGr—m)}]
= sup EH(r+o, A/(2)),

oeS(r—r)

(3.6)

as the maximal expected reward in an optimal stopping problem for the process A(z), with
payoff function H(r,z).

The function v admits a second representation in terms of the optimal stopping
boundary s(-), which we describe now: one starts by defining, by analogy with (3.4)
and (2.9), the process

(r) & tAS(z)A(T—r) ,
an OF0% /0 {ha(r + 0, Ag(2)) + f' (r + 6)}do

+{g (Ar=+(2)) = F(r A (r + 5(2)))} Lio<(r-r)AS (=)<t}
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and the family of stopping times

(3.8) ot(r,z) = inf{0 € [t,7 —r); Ag(z) >s(r+0)}A(r—r); O0Lt<T-—Tr.
Obviously, oo(r,z) coincides with the optimal stopping time o(r,z) of (2.9), and the

expression (3.6) is recast as

(3.9) o(r,z) = B[C\ZD) - cld) ] = EIELD

oo(r,z

a potential associated with the process of bounded variation

ét("yz) é C("rz) __C("")

o(r,z) oo(r,z)

which is not adapted to the filtration {#}. However, every excessive function such
as v(r,z) is also the potential associated with an adapted, nondecreasing process
D("2) the dual predictable projection of c(r=) (or, as it is equivalently called, the
“balayée prévisible” of C("2)),

This process can be found explicitly; indeed, using the methodology of section 7
(Appendix) in [3], it can be shown that the dual predictable projection D(n2)  of
C("2) {s nondecreasing and is given by

t
(3.10) D" = /0 {ha(r +6,40(2)) + f (r + 0)} 1(ay(2)>s(r+0)} 90
+ {9 (Ar=r(2)) = F(7)} L{ar_. (&) >0(r)} L{o<ror<i) -

3.1 Remark: Because the process D% of (3.10) is nondecreasing, we deduce
that

(i) the region {(r,z) € [0,7) x [0,00); hs(r,z) + f (r) < O} is included in the contin-
uation region C of (2.8), and

(ii) g(z)=1(r); V z>s(r).
This latter conclusion simplifies (3.10) to

t
D" = [ {ha(r +6,46(2) + ' (r +0)} 14, (2)>s(r+0)} 40 - o
(o]

From all these considerations, it develops that we can write (3.9) in the form
o(r,z) = B[C{"D] = E[D{"?)]
(3.11)

(r—r)AS(z) ,
= E./o [hz(r +t,z+ W)+ f(r+1)] liz4we>s(r+t)} dt
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and from (3.5), (3.2), (3.11) we obtain
(3.12)

(r—r)AS(y)
u(r,y) = E| /0 ha(r + t,y + W) Liyiw,<s(r+t)} dt

, (r=r)AS(y)
+9(y+W —') Lis@)>r—r} — A fr+t) Liy+we>a(r+t)} dt |

for (r,y) €[0,7] x [0,00).

In the next two sections, we shall try to see what happens if we integrate the two
expressions (3.12) and
(3.13)

a(r,y)AS(y)
u(r,y) = E| /0 he(r +t,y + Wi)dt + f(r + o(r,9)) Lio(r,y)<S @) A(r—r)}

+9 (y+Wrer) Lo(ry)=r—r<s@)}]

for the optimal risk u(r, - ), with respect to the spatial variable. In section 6 we shall
connect the results of these integrations with a problem of optimal control.

4. FIRST INTEGRATION
We shall integrate first the expression of (3.12) in the variable y.

4.1 Proposition: For every z > 0, consider the Brownian motion started at =z with
reflection at the origin:

A
(4.1) Ri(z) = z+ W, + Li(z) = z+ W;+ max|0, Onsag%ct{—x — We}
=(zVM)+W:; 0<t<oo,

where M is the increasing process

(4.2) M, = Oxgxéct(—W,) ; 0<t<oo,

and introduce the function

N(r,z) 2 E[/T—r h(r +t,s(r + t) A Re(z))dt + g(Rr—r(z))
(4.3) 0

- /0 T F r+ O(Re(a) — olr + 1)t )

on [0,7] X [0,00). We have then

(4.4) / :r) u(r,y)dy = N(r,z) - N(r,s(r) -
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Proof: With the help of the equivalence S(y) >t <= M; < y we obtain back in
(3.12) with z < z:

z VM, _, ,
/ 9 (Y+Wr—r) Lisy)>r—ry dy = / L9 (y+Wr_,)dy = g(Rr—r(2)) —9(Rr—r(2)) ,
z z2VM,_,
z VM,
/ hz(r +ty+ Wt) 1{y+WgSa(r+t)} dy = / M hz(r +ty+ Wt) 1{y+W,$a(r+t)} dy
z zVM,

=h({(zV M) + Wi} As(r+1) —h({(zV M) + Wi} As(r+1t))
= h(Re(z) As(r+1) —h(Re(2) As(r+1)  on {S(y) >t}

as well as

/:f'(' +1) Ly+we>s(r+1)} Hs@)>ydy =
= r+0l(zv M)V (s(r+t) —We) — (2V M) V (s(r +t) — W3)]
= f'(r + )[(Be(z) — s(r + )+ — (Re(2) — s(r +1))*] .
The identity (4.4) follows. o

4.2 Corollary: We have

(45) Nirs(r)) = [ h0,8(6)a8 +o(s(r) + Flr)olr) = 10)s() + [ 7 @)s(0)an,
and if the function s(-) is of bounded variation:

(4.6) N(r,s(r)) = / " h(6, 5(6))d8 — / " 1(6)ds(6) + o(s(r) -

This is the “cost of a (deterministic) ride along the moving boundary s(-)”.

Proof: Let us recall that u(r,y) = f(r), for y > s(r). It follows then from (4.4)
with = > s(r) that

N(r,s(r)) = N(r,z) — f(r) - (z — s(r))

= E[/ h(r +t,s(r + t) A Ri(z))dt + g(R,_(2)) — f(7)(z — s(r))

-/0 £ (r + {(Re(2) = s(r + )+ — (= — s(r))}dt ] .

Letting £ — oo and appealing to the monotone and dominated convergence theorems,
as well as to the fact g(y) —g(s(7)) = f(r)-(y—s(r)) for y > s(r), we obtain (4.5).
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5. SECOND INTEGRATION

Let us consider the processes K("2) A(n%) defined by K.s"z) = AS,"’) =0 and
by the system of functional equations

(r,z) _ r,z
(5.1) K" = max|0, o?gt{-—z ~We+ADY; o<t<r—r

(5.2) A" = max|o, Jmax {z+Wo— s(r +0) + K o<t<r—r.

The solution to this system exists and is unique, for every Brownian path; both K (%),
A("%) are continuous on (0,7 —r] and we have K,SQ’) =0, Af,’f’ = (z—s(r))T (cf.
[4], Appendix). Now the process

(5.3) XD L oW, + KM AP, o<t<r—r

is, for 0 < z < s(r), a Brownian motion started at = and reflected at the origin and
along the moving boundary {s(r +1t); 0 <t <7 —r}; for an initial position z > s(r),

the initial jump of A("?) results in X ‘S:Z') = s(r), and from then on the situation is
the same as described above.

5.1 Proposition: For the function

(54) M(r,z) £ E| / h(r + t, X"®)dt + / Fr+8)dA™ 4 g(x9)]
(o] [0,7—7)
we have

(5.5) / * u(ry)dy = M(r,z) - M(r,s(r)) - .

()

The validity of (5.5) is obvious for z > s(r); for z € [0,s(r)], it will follow
by integrating over the interval (z,s(r)) the ezpression of (3.18). More precisely, we
shall take r = 0 for simplicity of notation, denote by (K(z),A(z),X(z)) the triple
(K(02), A(0:2) X (0:2)) | and establish the following pathwise result:

5.2 Lemma: For every z € [0,5(0)], define the stopping time

(5.6) o(z) £ inf{t €[0,7); s+ Wy >s(t)}AT
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where s:[0,7) — (0,00) is any continuous function. We have then the a.s. identity
8(0) ro(y)AS(y)
/ [ / ha(t,y + Wi)dt + f(0(9)) 1o () <rasw))
z 0

+9 (¥ + W)l (r=o()<sw)ldy

= [/OT h(t, X:(s(0)))dt + jor f(t)dA¢(s(0)) + 9(X-(s(0)))]
- /0 "h(t, Xo(x))dt + /0 " F()dAe(z) + 9(Xo (2))] -

(5.7)

Consider the continuous, nondecreasing processes M of (4.2) and

A
= - H <t<
(5.8) L, 20X, (Wo — s(0)) ; 0<t<r,

with left-continuous inverses given by S(-),o(:) of (2.5), (5.6), respectively:

(5.9) {S(z) <t} ={M; >z} ; VYV 0<t<oo
and
(5.10) {o(z) <t} ={Le>-z}; VO<t<r

{o(z) =1} ={L, < —z}.
We shall work separately on the two events {o(z) < S(z)} and {o(z) > S(z)}.

PROOF OF (5.7) ON {o(z) < S(z)}: On this event, we have
(5.11)

0 ; 0<t<o(z z+W; 0<t<o(z
At(z)={z+Lt ; a(x)ﬁtgé'*)(z)}’Xt(z)z{Wt——Ift ; a(z)StSé'*)(z)}

where

(5.12) S*(z) £ inf{t € [o(z),r); Wi< LAt

is here the first hitting time of the origin by the process X(z). Formulas analogous to
(5.11), (5.12) hold for every y € [z,5(0)], and we have 0= o(s(0)) < o(y) < o(z) for
such a configuration. In particular, the processes X(y) coincide on [o(z),7] for every
z <y < s(0), and thus

(5.13) 5*(y) = §°(s(0)), o(v) <S(y); V yelz,s(0)].

The proof of (5.7) will be complete, as soon as we have established the following
a.s. identities:

8(0) T T
619 [T feNem<rmsmn dv = [ 100 - [ 10aaa)
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s(0) ,
(5.15) /z 9 (¥ +Ws) Lro)<sy)y 9y = 9(X+(s(0))) — 9(X-())

(5.16) /z " ( /0 T h,(t,y+W¢)dt)dy= /0 " h(t, Xe(s(0)))dt— /0 " h(t, Xa(2))dt .

But this is straightforward; thanks to (5.11)-(5.13), the right-hand sides of these ex-
pressions are equal to f:(z) f(t)dLs, [g(W, — L,) — g(z + W;)] 1{o(z)=r} and

f:(z) [h(t,Ws — L) — h(t,z+ W;)|dt. On the other hand, by virtue of (5.10), (5.13) the
left-hand sides are computed as follows:

8(0) a'(z)
[ 1o 1w dv= [ s0)ae,

50 °0)
/ 9 (W+W)l)=r) dy = / 9 (+Wr)ly<—1,} dy

z

= 1{0‘(2)=T}[g(WT - Lr) - g(-’l: + W‘r)] ’ and
5(0) o(y) T 5(0)
/ dy/ he(t,y + Wi)dt =/ dt/ Liy<—L.} hz(t,y + Wi)dy
z 0 0 z

T o(z)
_ / acno (6, We — L) — hit, 2 + We)ld = / (h(t,W; — Ls) — h(t, s + Wi)]dt .
0 0

a

5.3 Remark: Using exactly the same procedure as above, one can show that (5.7) is
also valid on the event

(5.17) {o(z)>S(z) and o(y)<S(y); V ye(z,s(0)]}.

In a realization like this, the Brownian path issued at z just touches the origin at
t = S(z) without crossing it, and then goes on to cross the moving boundary (draw a
picture).

PROOF OF (5.7) ON {o(z) > S(z)}: Let us pick a realization that belongs to
this event; if it belongs also to the event of (5.17), we are done. If not, we consider for
this particular realization the number

A

(5.18) z = inf{y € [0,5(0)]; o(y) < S(¥)},
for which we have
(5.19) A S(y) < o(y), V yelz,z2].

In particular, for every such y we have from (5.1)-(5.3):

(5.20) Ki(y) = M —y)t, Xe(v) = (yV M) + Wi 0<t<ouy),
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where

ou(y) £ inf{t € [0,7); Xi(y) 2 s()} AT

(5.21) = inf{t € [S(y),7) ; Mi+W;>s(t)}AT.

Quite obviously

(5.22) S(z) < S(y) £85(2), ou(2)=0(2) =0u(y); V yelz,2]
and
(5.23) the processes X.(y) coincideon [S(2),7]; V ye[z,2].

In view of Remark 5.3, in order to establish (5.7) on {o(z) > S(z)}, it suffices to
show that

o(y)AS(y) ,
/ [/ ho(t,y + We)dt + f(o(¥))Lio)<ras@)) T 9 (W + Wr)lir—o(y)<s ()} |9y

“[/ (t, Xe(2 dt+/f YdA:(2) + g(X. ]—[/ h(t, X:(z))d
+/0 F(t)dA¢(z) + g(X- ()]

holds a.s. on this event, or even (thanks to (5.19) - (5.23)) that

z (y)AT TAS(2) .
(5.24) / dy /OS hz(t,y + Wt)dt = [) ’ [h(t’ Xt(z)) - h(t’ Xt(z))]dt ’

(5.25) / g'(y + Wr)l{r=o'(y)<S(y)} dy = [g(Xr(z)) - g(Xr(Z))]l{r<S(z)}

z
hold a.s. on {o(z) > S(z)}. However, a verification of (5.24), (5.25) based on (5.9),
(5.20) is straightforward. o

The proof of Lemma 5.2 is now complete.

Comparing the relation (5.5) with (4.3), we see that the functions M(r, -), N(r, -)
are both primitives of the optimal stopping risk u(r, - ). We shall show in section 7
that these two functions are actually sdentical.

6. THE CONTROL PROBLEM

Consider the class A of {#} - adapted processes ¢ = {£:; 0 <t < oo} with
§o = 0 and nondecreasing, left-continuous paths, a.s. Corresponding to any given
>0 and { e A, denote by (X,K) the solution to the RP(z+ W — ¢), i.e., the
Reflection Problem associated with the process =+ W — ¢:

(6.1) Ked, X=z+W-£(+K
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(6.2) X¢>0; V 0<t<oo
[o o]
(6.3) X dK§ =0
0
(6.4) AK: 2 Kiy —Ki=2Xpp; V te[0,00) st. AK;>0

hold a.s. Roughly speaking, K represents the “minimal cumulative amount of right-
ward pushing at the origin that has to be exerted, in order to keep the resulting process
X of (6.1) nonnegative”.

As shown in [1], for a.e. Brownian path there exists a unique solution to the
problem (6.1)-(6.4). Besides, if we donote by D(7,z) the class of processes £ e A for
which

AL < X Vo<t

(i.e., processes which never attempt a jump across the origin), then for every ¢ € D(r,z)
the corresponding reflection process K is continuous, and is given by
K; = max|0, suposog{ﬁo — (z +Wa)}.

Suppose now that we associate the expected total cost

T—r
(6.5) J(&r,z) 2 E[/ h(r +t, X;)dt + / ) f(r+t)dé + 9(X-—r)]
(4] 0,r—r

to every ¢ € A, which now we regard as an element of “control”, at the disposal of the
decision-maker. Here h(t,-) plays the rdle of a running cost on the state X;, f(-) is
the cost per unit time of controlling effort that is exerted, and g(-) is a cost on the
state at the terminal time. The so-called reflected follower control problem is to choose
¢ € A that minimizes the expression of (6.5) over this class, and

(6.6) V(r,z) 2 inf J(&r,7)

is the value function of this problem.
It can be shown (cf. [5], Proposition 4.1 or [2], Remark 5.7) that the class
D(r —r,z) is complete for the problem (6.6), so that

(6.7) V(r,z) = eevglfr,z) J(&r,z) .

Clearly, the process A("?) of (5.2) belongs to D(r—r,z), the pair (x(r=) K(n2)) of
(5.1), (5.3) is the solution to the RP(z+ W — A("2)), and from (5.4) we have

(6.8) M(r,z) = JA"D; r,2) > V(r,z) .

Here is then the fundamental result of this paper.
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6.1 Theorem: The functions M,N and V of (5.4), (4.3) and (6.6), respectively,
are all equal:

(6.9) M(r,z) = N(r,z) =V(r,z); V (r,z) € [0,7] x [0,00) .

6.2 Corollary: It follows immediately from (6.8), (6.9) that the process A("%) is
optimal for the control problem of this section.

In other words, as soon as we have the optimal stopping boundary s(-) for the
problem of section 2, we can obtain the optimal processes for the control problem by
reflecting the Brownian motion W at the origin and along this moving boundary.

a

We shall prove Theorem 6.1 in the next two sections, 7 (identity M = N) and 8
(identity N =V).
7. M=N

It is quite obvious from the defining relations (4.1), (4.3) and (5.4) that the processes
tAo(r,z)
/ h(r + 6,Rq(z))d0 + N(r + t Ao(r,z), Rino(rz)) 5 O0<t<7—7
0

tAo(r,z)
/ h(r + 0, Rs(z))d0 + M(r + t A o(r,2), Rino(rz)) ;5 O<t<r7-—7r
0
are both {#} - martingales. On the other hand, the difference

D(r) 2 M(r,z) — N(r,z) ; 0<r<r

is a continuous function of bounded variation (e.g. Theorem 4.3.6 in [6]), independent
of the spatial variable by virtue of (4.4), (5.5). It develops that

t
m(t) £ D(r+tAo(r,z)) = / l{o<o(rz)) D (r+0)do, F; 0<t<7—r
0

is a continuous martingale with paths of bounded variation (and therefore constant).
But m(0) = D(r) and m(r—r) = D(o(r, z))1{o(r,z)<r—r} because D(r—r) =0, and
thus

D(r) = D(o(r,z)) 1{0’(r,z)<r—r} y a.s.
holds for every r € [0,7], 0 < z < s(r). This is possible only if D(r) = 0.

8. N=YV

We begin with an auxiliary result.
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8.1 Lemma: The process
(8.1) N(r +1, Re(z)) + /Oth(r +0,Ro(z)) df; O<t<r—r
isan {#%} - submartingale, for every (r,z) € [0,7] X [0, 0).
Proof: It suffices to establish
(8.2) E[N(r + 0, Ro(2)) + /0 " h(r +0, Ro(z))do] > N(r,2)

for any given o € Sor—, (cf. Problem 1.3.26 in [6]). From (4.3) and the strong Markov
property, we have

EN(r + 0,R,(z)) = E[/OT—'._G h(r+ o+ 0,s(r + o+ 0) A Ry(R,(z)))d0
oo Bl = [ £+ 0+ O (Ro(Re(a)) = s+ o+ )]
_ B L " h(r + 0,5(r + 0) A Ry (2))d8 + g(Ry ()

[ 7 e+ 0)(Ralo) - o + o)) a0).

It develops that

(83)  E[N(r+o,Ro()) + /0 " h(r + 6, Ro(2))d8] = N(r,2) + A(r, ) ,
where
A(r,2) = E /0 "{h(r + £, Re(2)) — h(r +t,5(r + t) A Re(z))
+ E/: £ (r + )(Re(z) — o(r + 1)) +dt
>E /Oa{h,(r Ftys(r+1)+ £ (r+ )} (Relz) - s(r + 1)) ¥dt > 0.
We have used the convexity of h(r, - ), as well as the Remark 3.1(i). o

8.2 Remark: Thanks to the Doob-Meyer decompositon and (4.1), (4.3), the
continuous and nonnegative submartingale of (8.1) can be written as

(8.4) /0 " h(r+0, Ro(2))d0+ N(r-+, Re() = N(r,2) + /0 " u(r+0, Ro(2)) dWs + As(r, 2)

where A(r,z) is a continuous nondecreasing process (cf. Theorems 1.4.10, 1.4.14 and
Problem 1.4.13 in [6]).
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Here is the fundamental result of this section.

8.3 Proposition: For fixed (r,z) € [0,7] X [0,00), denote by (X(z,¢&),K(z,¢)) the
solution to the RP(z+ W —¢) corresponding to any ¢ € D(r —r,z). Then the process
(8.5)

Qu(z, ) £ /;

t
h(r+0,Xy(z, f))do-i-/[ )f(r+0)d€o+N(r+t,Xt(z, €); 0<t<r—r
0,t

isan {#} - submartingale.

Proof: The argument will proceed in several steps.
Step 1: ¢ = 0. This case amounts to Lemma 8.1, because (X(z,0),K(z,0)) =
(R(z), L(z)) in the notation of (4.1).

Step 2: & = f; 2,ds for a bounded, nonnegative and {#;}-progressively measurable
process z = {2;;0 <t <7 — r}. Consider the exponential martingale

t t
Z, = exp{—/ 2,dW, — }-/ 22ds} ;
0 2 /o

under the probability measure P(dw) = Z,_,(w)P(dw) on F_,, the process

t
WtéWt'FEt:Wt-i-/ zgds; 0<t<r—r
0

is a Brownian motion, by virtue of the Girsanov theorem (section 3.5 in [6]). Now (4.1)
is written equivalently as

Rt(:z:)::c+Wt—§t+Lt(:c), for 0<t<7-—r,
and because L(z) is flat off {t > 0; R:(z) =0} it develops that
(8.6) (R(z),L(z)) is the solution to the RP(z+W —¢).

Besides, we have from (8.4):

/oth(r+0,Ro(z))do+ £(r +0)des + N(r +1, Ry(z)) =

(8.7) [0,t)

t
= N(r,z) +/ u(r + 0, Ry(z))dWy + A¢(r,z) ,
0
where

As(r,2) 2 As(r,2) +/0 [£(r +6) — u(r + 0, Ro(=))] 2o d8

is a continuous, nondecreasing process. The assertion follows from this observation,
coupled with (8.7) and (8.6).
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Step 3: An arbitrary ¢ € D(r — r,z) can be approximated by a monotonically
increasing sequence {¢ (")};"’;1 of absolutely continuous processes as in Step 2, such
that

lim M =&, lim Ki(z,6™) = Ky(z,)  and
Jim Xi(z,6™) = Xy(2,6) 3 V 0<t<r—r,

almost surely (cf. [2], Lemmas 5.4, 5.5 and Proposition 5.6). Step 2 shows that every
Q(z,£(™) isan {#} - submartingale, and by the monotone and dominated convergence
theorems this property is inherited by the process Q(z, £). o

In does not remain now but to put the various results together; the submartingale
property of the process in (8.5) gives

J(&r,z) = EQr—r(z,€) > N(r,z); V €eD(r—r,x)
and from (6.7), (6.8) and section 7 we deduce:
V(r,z) > N(r,z) = M(r,z) > V(r,z) .

The proof of Theorem 6.1 is complete.
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