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Multiple points of Markov processes in a complete metric space

by
L.C.G. Rogers

1. Introduction.

Let (S,d) be a complete metric space with Borel a-field S, and let be an S-

valued strong Markov process whose paths are right continuous with left limits. We ask

(Q) Is P (Xt = ... for some 0  t 1  ...  tk) > 0 ?

This is equivalent to the question 
’

(Q’) Is P (X (I1 )n ... n X (Ik) ~ 0) > 0 for some disjoint compact intervals Ii, ..., Ik ?

We shall find conditions sufficient to ensure that X has k-multiple points with positive pro-
bability, and we will apply this to Levy processes, providing another proof of a result of

LeGall, Rosen and Shieh [6], and its improvement due to Evans [3]. However, it is

advantageous to begin with the easier question

(Q) Is P (X(I1 )n ... n X(Ik) ~ 0) > 0 for some disjoint compact intervals Ii, ..., Ik ?

Here, X(Ij) = closure ( {XS : s E I~ } ), a compact subset of S. In recent years, much effort
has been devoted to a study of (Q), usually in the form of constructing some non-trivial

random measure on the set { (t 1, ..., tk) : Xr 1= ~ ~ ~ = Xt~ } from which the existence of
common points in the ranges X(I) follows immediately. We mention only the work of

Dynkin [1] and Evans [2] on symmetric Markov processes, of Rosen [8], [9], Geman,

Horowitz and Rosen [4], LeGall, Rosen and Shieh [6] and Evans [3] on more concrete

Markov processes in as a sample of recent activity. Typically, one studies the random

variables

(1) Ze = FE(Xr) dt ~

where C = Ii x ~ ~ ~ x Ik, with the Ij disjoint compact intervals in R+ , U E S, and

k-1

(2) FE(xi, ..., xk) - ~ xi+1) 
i=1 1
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(where f £ is some ’spike’ function such that f E (x,y) = 0 if d (x, y ) > e), and proves L 2-

convergence of the Z £ to some non-trivial limit as ~ ~ 0.

This will be the approach used here, but, since we are concerned only with an answer
to (Q), and not with the (more refined) L2-convergence of the Zg, we can weaken the
assumptions somewhat. In particular, we give sufficient conditions to ensure the

existence of points of intersection for general (i.e. non-symmetric) Markov processes.

If we could prove that

(3.i) for > 0, : 0  e  bounded in L2;

(3.ii) lim sup E Ze > 0,

then the answer to (Q) is, "Yes". The point is that  £  yk is then uniformly integr-
able ; if there were no common points in the closed ranges X(Ij), then the Z £ would
(almost surely) be zero for all small enough e > 0, and hence the Z£ -~ 0 in L 1, contrad-
icting (3.ii).

2. The main result. We suppose that there is a a-finite measure  on S such that for

all x ~ S

(4) ~,(B£(x)) > 0 V £ > o .

Here, B ~ (x ) --- { y d (x, y ) _ ~ } . (The assumption (4) is no great restriction, since we

could always confine ourselves to the closed set of x for which it is true.)

We shall suppose that the Green’s functions of X have densities with respect to ~,: for

0 _ a  b  oo, there exists ~.~(’~) such that

(5) = (d x E S, A E S) .

We suppose also that there are open U c V c S such that for some ~ > 0 

neighbourhood of U is contained in V, and that there are positive finite K, T such that
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(A) N~(B2~(x)) ~ K d E E d x E V; i

(B) xv  °°; 1

(C) for each 8 E (0, 2T) ,

sup g s,2Z’ (x~y)  °° ; §

(D) for each 0  a  b  oo, , g~,b(.,.) is lower semicontinuous on V x V ; ;

(E) for some ~ e U and T e (o, T) , ,

g o,~ (~~ ~) > 0 .

Remarks on conditions (A)-(E). Condition (A) seems fairly mild; it is trivially satisfied
for Lebesgue measure on Euclidean space. The purpose of (A) is to let us take

(6) 

and estimate

(7) K 

S K 

= 
.

Condition (B) is the ’folklore’ condition for k-multiple points. Condition (C) may appear
severe, but is frequently satisfied. Conditions (A)-(C) will give us (3.i), and conditions

(D) and (E) will give us (3.ii). We may (and shall) suppose that the ~t appearing in (E) is a

point of increase of go.. (~, ~).

THEOREM 1. . Assuming conditions (A), (B), and (C), the family o  E  is

bounded in L2. Assuming also conditions (D) and (E), there exist initial distributions
such that for some disjoint compact intervals I1, ..., Ik

P(X(I1)n...nX(I,~)~~) > 0. .

Proof. (i) Let m be the law of Xo. . For ease of exposition, we shall suppose that X has a

transition density pt (., .) with respect to ~,; the result remains true without this assumption

though.
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The time-parameter set C = Ii x ... x 1~ used in the definition of Z is chosen so
that yr is in the interior of 1~ for each j, so that ~ I~_~
(/ = 2,.... ~), and so that IIj I  T for ally. Then

EZ~ = 

= E L ds dt  m(dy0)IU(x i )it/(y ,

R " 7=1 
’ ~~~ 

~ 

~ 

where C2~ = {(s,t) ~ for i = 1, ...,k}, to = 0, the sum is taken over all subsets R

of{l, 

~ = ~ . , / = Yt i if i ~ R

~ =Y~ , / if .

The typical term in the sum is bounded above by some constant times

n q ,

7=1

where we have made the abbreviations

= ~8.2r(~.y). ,

= 
.

By assumption (C), the factors are globally bounded, because x1,y1 ~ U, and
 ~/k for each i, and therefore by assumption x; ~ V for all i = 1, ...,k.

Thus we have an upper bound in terms of

 IU(x l) l) W) 03A0 g (xj,yj) (dxj) (dyj)
7=1

 03A0( IU(x1)IU(y1)F~(x’)F~(y’)g(xj,yj)k (dx) (dy))1/k ,

by Holder’s inequality, where, of course = j"[ The jth term in this product,
1 

~ ’

raised to the power k, is bounded by

Iv (xj)Iv(yj) g (xj,yj)k 03A0 f~ (x’i ,x’i + 1) f~ (y’i ,y’i + 1) (dx) (4y ) ,

which we deal with by integrating out successively ...,J~+1,~+1, and then,
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exploiting (6), integrating out x l,y i, ...,xj i ,y j i to leave as an upper bound

K2’ 2 J (

which is finite, by assumption (B). Hence for 0  e  E (ZE ) is ,bounded above by a
finite constant independent ofe, which proves the first statement.

(ii) We next exploit (D) and (E) to give us (3.ii). By the choice of the set C, we have
that for some small enough 9 > 0,

= { (t l, ..., tk) : I  9 for i =1 ..., ~ k {~ ,

where t o = 0. Hence

EZ~ > E FE(Xt)
= j m (£ o ) Iu (x i ) n g (x; -i ,x;) fl fg (x;,x; + i ) y(dx) ,

where we write g as an abbreviation for g ~~, ~+~. Since ~t is a point of increase of
g 0,.(03BE,03BE), we know that g (03BE,03BE) > o. Thus

(8) 
- 

i = 1

where

- inf { g (x,y ) : d (x,x 1 ) - ke, d 1 ) - ,

which, in view of (D), increases as E ~. 0 to g (x l,x 1 ). By integrating out the variables

xk, ..., x2 in (8), we obtain the lower bound

EZ, > 

and hence the estimate

lim inf EZ~ ~ m (dxo) IU (x 1 ) g 
£.1,0

By lower semi-continuity and the fact that g (~, ~) > 0, we know that g (x, y ) is positive in
a neighbourhood of (~, ~) and so taking m = 8~, for example, yields

lim inf EZ~ > 0 . 0
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We now turn to the more difficult question Q. Let us suppose further that every sin-

gleton is polar:

(F) = y for some t > 0) = 0 ’d x,y E S , ,

and that

(G) for each ~, E Pr(S) , for each previsible stopping time ~ > 0 we have

X, = X~ P~ - a.s. on }~  ~} .

For example, if S is locally compact and separable, and the process X is Feller-

Dynkin, then (G) holds; see Rogers and Williams [7], Theorem VI.15.1.

THEOREM 2. Assuming conditions (A)-(G), there exist initial distributions such that

for some disjoint compact intervals I1, ..., Ik

0) > 0 . .

Proof. The proof uses Theorem l, and proceeds by induction on k. For k = l, the result
is trivial. We suppose the result is true for K, and, using Theorem 1, take some initial
distribution, and disjoint compact intervals 11, ..., IK + 1 such that is to the right of Ij
for each j, and

(9) P(RK n X(Ix+1 ) # 0) > 0,

whereRK = ... Let RK = .. Then

P(RK n X(IK+l) # 0) > 0,

because, if not, from (9), the previsible time set

{ r E : Xr- E Rx ~

is non-empty with positive probability and can therefore be sectioned by a previsible time
~; but, by (G), X~ = X~_ E RK.

Finally we deduce that

P(RK 0) > 0,

for if not, we would have to have

(10) 0) > 0 ; §



192

_ K _

since RKBRK c u (X (I j )1X (I j )), and X (I j )1X (Ij) is contained in the (countable) set of
j=1

left endpoints of jumps of X during time interval Ij, it follows from (F) that the set RKBRK
is polar, contradicting (lo). 0

3. Multiple points of Lévy processes. Let X be a Lévy process in with resol-

vent (U~,)~,, o. We shall assume that the resolvent is strong Feller (equivalently, that each
U ~, (x, . ) has a density with respect to Lebesgue measure - see Hawkes [5]), in which case
there is for each ~, > 0 a ~,-excessive lower semi-continuous function u ~, such that

.

To establish sufficient conditions for k-multiple points, we shall need three lemmas

on Lévy processes of interest in their own right.

LEMMA l. The resolvent is strong Feller if and only if for every
0 - a  b  ~ the kernel Ga,b has a density ga,b. .

If this happens, the densities may be chosen so that

(i) is lower semicontinuous for each o _ a  b  ~;

(ii) (a,b) -~ is left-continuous increasing in b and right-continuous

decreasing in a for each x;

(iii) for all o _ a  b  ~ and all x e lltn

lim 03B4-1  g0,03B4(y) ga,b-03B4 (x -y) .

LE 2. For a Lévy process with a strong Feller resolvent, the following are

equivalent:

(i) for some ~, T > 0,

{|x|~~} g0,T(x)k dx  ~;
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(ii) for some T > 0 , g o,T 

(iii) for some ~, > o , 

(iv) for some ~ , ~, > 0,

|x| i  ~.

LEMMA 3. Let X be a Lévy process with a strong Feller resolvent such that

g o,T(0) > 0 for some T, and { ~} is non-polar for some ~ Then {x} is non-polar
for every x e lRn.

We defer the proofs of these lemmas so as to show how to deduce the following result
from them and Theorem 2. Fix some integer k > 1. .

THEOREM 3 (LeGall-Rosen-Shieh; Evans). Assuming that the Lévy process X has a

strong Feller resolvent, the conditions

(1 l.i) for some E , T > 0

{|x|_E} llx  ~ ;

(1 l.ii) for some T > o , g o,T{o) > 0

are sufficient to ensure that the paths of X have points of multiplicity k almost surely.

Proof. In view of Lemma 3, we may assume that every singleton is polar, for, if not,
every singleton is non-polar, and the existence of multiple points is trivial! To apply
Theorem 2, we must check conditions (A)-(G); (A) is immediate, (B) is guaranteed by
(11.i), (D) follows from Lemma l, (E) comes from (l l.ii), (F) is by assumption, and (G)
is valid because the Lévy process is a Feller-Dynkin process. Finally, to check (C), {ll.i)
implies that g o,T is square-integrable in a neighbourhood of 0, so, by Lemma 2,
g o,T E L2. Hence g o,T* g o,T is bounded and continuous. But for f >_ 0 measurable, of
compact support, and 0  8  T

J 80,T* = iT dt T ds 
_> 8~2 ~~ Pt f (0) dt
- 
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whence g s,T(.) is bounded globally (exploiting lower semi-continuity).

This completes the proof that (1 l.i-ii) implies that X has k-multiple points with posi-
tive probability, and hence, by Borel-Cantelli, there are almost surely k-multiple points.

Proof of Lemma l. . The arguments used are similar to those of Hawkes [S], so we will

just give an outline. The first statement of the lemma is immediate. To get good versions
of the densities ga,b, firstly take any densities g p,q(.} for Gp,q, 0 _ p  q rational,
then define

- sup {g p,q(x) : a  p  q  b? ,

which have property (ii) (which remains preserved under the subsequent modifications).
Next, for n > (b - a )-1 define

- n j g ga,b-s(x -Y) , (b = 

which is lower semicontinuous in x (it is the increasing limit as M ~ ~ of

(M A ~

which are continuous by the strong Feller property of G o,g). Finally, we take

> (b - a) 1 } . .

Since, for fixed a  b, gb is increasing almost everywhere to a version of the density of
Ga,b, this provides a version with the desirable properties (i} - (iii). 0

Proof of Lemma 2. The implications (iii) => (iv) => (i) are trivial. The implication (ii)
=> (iii) follows easily from the estimate

~ 

.

So, finally, we assume (i) and prove (ii). Specifically, let K denote the cube

K - {x E R" : I  -~- for i = 1, ..., n { ,

and assume without loss of generality that
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 ~,

where we have abbreviated g o,T to g. For j E Z", let

~~ - inf {t > 0 : Xt E j + K} .

Then for x E j + K, we have from the strong Markov property at 03C4j that

g (x) ,

from which

 

and, integrating,

.

The proof is finished if we can show that

~(T) -  T)  ~.

j

Since ()) is evidently increasing, it is enough to prove that

~0 03BB e-03BBT 03C6(T) dT = 03A3 P (03C4j  03B6)  ~,

where § is an exp(03BB) random variable independent of X. But we have the lower bound

(12) .

The sum over j E Z" of the left-hand sides of (12) is clearly finite, and u ~, (x ) dx > 0,
so the proof is finished.

Proof of Lemma 3. If { ~} is non-polar, the resolvent density u ~,(.) must be bounded,
since

Ex = 

for some constant CÂ,. (Here, H~ = inf { t > 0 : Xt = ~ } .) By lower semicontinuity,
u ~, (0) > 0 implies that u ~, > 0 in some neighbourhood of zero and hence, by the resolvent

equation, u~, > 0 everywhere. Thus  ~) > 0 for every x, and translation invari-
ance implies that every point is non-polar. 0
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Remarks. (i) It is evident that (II.ii) is equivalent to the condition

(9.ii) for some X > 0, u ~,(o) > 0.

Hence, in view of Lemma 2, the conditions (11) are equivalent to those imposed by Evans
[3].

(ii) Similar techniques can be used to study the problem of the existence of common

points in the ranges of k independent Markov processes, a technically easier problem.
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