
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

HIROSHI TANAKA
Limit distribution for 1-dimensional diffusion in
a reflected brownian medium
Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 246-261
<http://www.numdam.org/item?id=SPS_1987__21__246_0>

© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1987__21__246_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


LIMIT DISTRIBUTION FOR 1-DIMENSIONAL DIFFUSION

IN A REFLECTED BROWNIAN MEDIUM

By H. Tanaka

Introduction

In analogy with Sinai’s problem (8] on a random walk in a random

medium, Brox C1) considered the diffusion process X(t) described by
the stochastic differential equation

(1) dX(t) = X(0) = 0 ,

where {W(x), x E R} is a Brownian medium independent of another Brown-

ian motion B(t), and proved that (log t)-2X(t) converges in distri-

bution as t -~ oo . Similar results in the case of a considerably wider

class of self-similar random media were obtained by Schumac-her [7~ . * ,

Recently Kesten C57 obtained the exact form of the limit distribution

for Sinai’s random walk as well as for a diffusion in a Brownian medium.

See also C2J for a related problem.
In this paper we substitute W(x) in (1) by a nonnegative reflected

Brownian medium and find the corresponding limit distribution. The

result was already anounced in (9J without proof but the Laplace trans-
form of the limit distribution given in (9: §3] is not correct. We

give here a full proof to the whole result of (9: §3~ with a correction

(see Theorem 1 and 2 below). Our method is similar to that of (1J .

Theorem 1. Let X(t) be a solution of (1) where W+= {W(x),x >_ 0}
and W - {W(-x), x > 0} are independent reflected Brownian motions on

the half line CO, oo) starting from 0 which are also independent of

the Brownian motion B(t). Then the distribution of (log t)-2X(t) con-

verges as to the distribution  defined by

(2) p = 

where mW is the probability measure 
on IR defined by (3.1) and Q is

the probability measure on the space of media ~ - 

such that W+ are independent reflected Brownian motions on (0, .

Theorem 2. u has a symmetric density and for X > 0



247

The present case is not contained in the framework of(7]since the

nonnegative reflected medium W(x) has (uncountably) many points giv-
ing its minimum. The case of a nonpositive reflected Brownian medium

was discussed in (9] . Some generalizations will be discussed in (5) .

Acknowledgment. I wish to thank Professor H.Kesten for pointing
out mistakes of the first version of this paper.

§1. Preliminaries and exit times from valleys

Let and Q be defined as in Theorem 1. For each W E W solu-

tions of the stochastic differential equation (1) define a diffusion

process in R with generator

(1.1 ) > .

1)
Such a diffusion can be constructed from a Brownian motion B(t) as

follows ([l~)). Let H be the space of continuous functions

w : !~0, °o) -~-B with c~(0) - 0, and denote by P the Wiener measure on H.
Denote the value of w at time t by w(t) or by B(t) and put

L(t,x) = lim + (B(s))ds (local time),
e~0 E 

~ 
0

S(x) = ) 
0 

A(t) =  e-2W(S-1(B(s)))ds = e-2W(S-1(x))L(t,x)dx , t ~ 0 ,
0 -~m

S - 1 A-1 - the inverse functions .

Then the process X(t, W) = S-1(B(A 1(t))) defined on the probability
space (~, P) is a diffusion process with generator (1.1) starting at
0. If we set (Wx)(.) = We. + x) , then Xx(t, W) = x + X(t, Wx) is

a diffusion process with generator (1.1) starting at x . Let

xz) - inf {t > 0 : t B{t) ~ {x1, xz)} ,

1) The Brownian motion here is not the same as the one in (1) but we
use the same notation B(t) .
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L(x1, x2, x) = L(T(x1, x2), x) , xfTR ,

S03BB(x) = x0 e03BBW(y)dy ,

X03BB(t) = X(t, aW) , Xx03BB(t) = x + X(t, 03BBWx).

Next we define a valley. Given a quartet V = (a,b1,b2’c)
is called a valley of W if

(i) a  b1  0  b2  c ,

(ii) W(b1) - 0, W(a) - W(c) - D ,

(iii) 0  W(x)  W(a)  x  b1 ,
0  W(x)  W(c) for b~ x  c ,

(iv) A_ = sup W(x) : a  x  y  bz}  D ,

{W(x) - W(y) : b1  x  Y  c}  D .

We call D (resp. A = 2) ) the depth (resp. the inner directed

ascent) of V. It is clear that there exist valleys of W with A  1  D

for almost all reflected Brownian media W . 
’

In what follows let be given and V= (a, b1, bz, c) be a

valley of W with the depth D and the inner directed ascent A . We put

T~ = T~(a, c) = in f {t  0 : (a, c)} .

The following three lemmas were proved in 

Lemma 1. . For a  x  c

S a (c), 
a

where 

03BB(y) = y e03BBW(z)dz
xd

and = means the equality in distribution.

Lemma 2. For each ~ > 0

d

{L(Àx1’ Xx), {ÀL(x1’ xz, x), x E 1R} .

2) a Vb = max { a, b}, a /B b = m i n {a, b} .
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Lemma 3. For A> 0 and 

(1.2) (X(t, ~), = W), t2 0} , ,

where W. (~ !W) is defined by

W~(x) = ~W(~x) , 

The following lemma plays an essential role in our discussions.

Lemma ~. For any A> 0 and [u, v]C(a, c)

inf  e~D~~ ~ 1 , ~ ~
L ~ J

Proof. The proof is similar to that of the corresponding lemma of
~1) but even much simpler. Let x E [u, v~J be fixed. Setting

s,(y) =~(y)/~(c) 
x 

~ 
x

and applying Lemma 1 and 2, we have

Tj = 1, 
~a

Since

03BB(c) ~ (c - x)exp{03BB max W } 
3)

(c - x)(c - a)exp(X max W - 03BB min W} L’ ~ (c - 
L [x,c] 

L’ = max L(-oo, 1, y) ,
y~i

we have

~(D+6)!
~ P ’(c - ~(D+6)~
=P L~ >e~~/(c- a)~~ ~0 , 

To obtain an estimate from below first we notice that

(1.3) lim C. = D ,

3) max W = max {W ( x). x ~1} , min W = min(W(x), x61) .
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where

Cx = ,

and the convergence is uniform in x E (u, v~t . Next, for given c > 0

we set

a1 = sup{x  b1 : W(x) = ~/~.} ,

Lx = min{L(-1, 1, y) : s~(a1 ) _ y _ s~(b1 )} .
Then applying Lemma 1 and 2 we have

T~ - d 
d 

C~ s~(c), 
a

~ C03BB  b1 L(-1, 1, 

a1

_> e~‘(D _ l~) (b - a max W1 1 1 
L J

= (b1 -a1)L03BBe03BB(D-03B4 2).
Since I and I converges to max W - D ,

" 1 ~’ ’ 

max W - D , respectively, which are both negative, we have

lim 03BB(a1) = lim 03BB(b1) = 0 ,
the convergence being uniform in x ~ [u, v]. Therefore

 e~(D ~)  P L  (b1 - a )-1e-~S/z 0 , X ~

uniformly in v] , because lim LÀ = L ( -1 , 1, 0) > 0 .

§2. The limit distribution of 03BBW)

In this section we change the notation slightly. Given WE M and

a valley V = (a, b1, bz, c) of W , we set

s~ = c ( Co, oo) +IR) ,

S~ = C((0, ~) -~ Ca, c3) ,

and denote by Px , x ~ IR (resp. y03BB , yE(a, c)) the probability measure
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on Q (resp. ~) induced by the diffusion process with generator

(2.1) 1 2 e03BBW(x) d dx(e-03BBW(x) d dx)

(resp. the diffusion process on [a, c] with (local) generator (2.1)
and with reflecting barriers at a and c). The latter diffusion has the

invariant probability measure m. given by

~(dy) . 
/ a

For any interval [u, c~)

mÀ([u, v)) = 

f e"~ K((u, v], ~)d~

m~ ~j U, V j~ * 

j 0 o e’~ c~, 

where, for an interval I in R , is the local time at 03BE for

the reflected Brownian medium, i.e.,

(2.2) K(I, ~ ) = 

Therefore

(2.3) m03BB([u, v]) = ~0 e-03BE K([u, v], 03BB-103BE)d03BE ~0 e-03BE K([a, c], 03BB-103BE)d03BE

~ 
K([u, v], 0) K([a, c], 0) 

~ m([u, v]) , À + 00 .

Next we set

~~ ~(dy)~ . ~=~ ’ °
a

R = R(w, ) = inf{t ~ 0 : wet) = (t)} .

Lemma 5. For any 6 > 0

e~~) = 1 .~L J
Proof. First we prove that

(2.4) limg IPx03BB{R  e03BB(A+03B4)} = 1 holds = band b.. °
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Without loss of generality we may consider the case x = b? . We write

b instead of b? for simplicity. For any S>0 such that A + ~D

we define a~~(a, b.) , , a~(a, b~) , , c~~(b~, c) by

a. 
= W (x) =A +-~-}. ,

a~= W ( x ) =A +T’}~ ,
c~= W(x) =A +2014-}.

and set

TO " = inf~O w(t) = a~ ,
T1 = T1(03C9) = inf{t~0 : w(t) ~ (a1, c2)} ,
T2 = T2(03C9) = inf{t~0 : w(t) ~ (a2, c2)} .

Then we can prove easily that

(2.5) Pb03BB{T0~}~Pb03BB{T0 = T1} = S03BB(c2) - S03BB(b) S03BB(c2) - S03BB(a1) ~ 1 , 03BB~~ ,

and hence

(2.6) 

e~
~P~~(0)~ (a, b~ + 0)} - 1

= n.~((a, b~) +~~(t)~ ~1. 1

2014)’1 ,~2014>oo,

by (2.3) because m({x6(a, c) : W(x) = o}) = 1 . On the other hand

Lemma 4. applied to the valley (a~, b~, b~, c~) whose depth is A+(S/2)

implies

(2.7) P~e~A~~P~T,e~~)~, ~~~ , ,
and so

o(1) (by (2.6))

~Px03BB{T1e03BB(A+03B4), T1 = T0} - o(1)
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~Px T 1  e~’(A+S) - 0(1) (by (z.5) )

- 1 , as 03BB ~ ~ ( by ( z . 7 ) ) .

Next, to consider the case where the diffusion starts at 0 we

shall consider three diffusion processes starting at 0, b~ and bz ,
respectively. By making use of the comparison theorem in one-

dimensional diffusion processes (for example, see t3: p.352]) we can

construct, on a suitable probability space ~~) , , three processes
X1(t) and such that the probability measure on 03A9

induced by (resp. 1(t), 2(t)) coincides with Pd (resp. Pb103BB,
Pb203BB) and

(2.8) X1 (t) _ ~o(t) _~z(t) , 
Put

03BB = 03BB ~ 03BB ,

Ri - Xi(t) - W (t) , i - 0, 1, 2 .

Since by ( z. 8) , we have

P~ Re~(A+~) - 1P R 0 ~e~(A+S)
~)

~ e ~(A+~) + 1

1 , 

by (z,l~), completing the proof of Lemma 5.

Le- mma 6. For any r1 , rz with and for any interval

(u, vl in R

lim P003BB{03C9(e03BBr) ~ [u, v]} = m([u, v]~[b1, b2])

uniformly in r E rz~ , where m is defined in (2.3).

Proof. Denote by T (resp. T) the exit time of (a, c) for 

(resp. wet)), and by TR (resp. TR) the exit time of (a, c) for wet)
(resp. after the collision time R. Since m~(U) ~ 1 as ~-~ o0
for any open set U containing c) : W(x) = 0~ , it follows
from Lemma l~ that

p 
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~ 1 , 03BB~ oo .

This combined with Lemma 5 implies

p03BB : = P003BB{R e03BBr1  e
03BBr2 R}

~IP003BB {R e03BBr1 e03BBr2 } ( 1° ~R)
~ 1 , 03BB ~ ~ .

Therefore for r~~j

(2.9) p~ E ru~ v’
> lP~ 0 R  e ~r1 , W ( e ar ) E ~u , vJ , e ~rz  ^’ TR ~

= IP003BB{Re03BBr1, (e03BBr)~ [u, v], e03BBr2R}

~ p03BB + m03BB([u, v]) - 1

- -~m(Cu , ;

as for the above equality we used the strong Markov property. Similarly

we have

v~ c >.m ( ~u, v~ ~b1 , bz~ ) , ,
~ -~ oo ~~ 

which combined with (2.9) implies

(b1, b2~ ) , 

The uniform convergence in r~ ~r1 , is also clear.

§3. Proof of Theorem 1

Let V= (a, b1 , bz, c) be a valley of W such that A  1  D .

Such a valley exists with Q-probability 1. In fact, b1 and b~ are

taken as

b1 = the smallest root of W(x) = 0 in (a’, 0)

the largest root of W(x) = 0 in (0, c’)

where a’ = W(x) = 1 and c’ = inf x ~ 0 : W(x) = 1 . The

endpoints a and c can be chosen suitably so that a  a’ , c > c’ and



255

V= (a, b~, bz, c) is a valley with A 1  D . In what follows

V = (a, b~, bz, c) denotes such a valley of W. We denote by mW the

probability measure on IR defined by

(3.1) mW([u, v]) = K([u’, v’] 0) K([b1, b2], 0)
where (u’, v’3 = (u, Then, in the notation of §1 Lemma 6

reads as follows: For any interval I in m and for any family
{r(03BB),03BB>0} satisfying lim r(03BB) = 1 ,

(3.2) lim P{X(e03BBr(03BB),03BBW) ~ I} = mW(I)
for almost all W with respect to Q . Now we define 1P - P ® Q and

~= Integrating both sides of (3.2) with respect to Q we

have

(3.3) lim T I = (I) .
Next, define W03BB as in Lemma 3. Then {W03BB(x), x~R} is again a

reflected Brownian medium. Therefore (3.3) yields

(3.4) lim P{X(e03BBr(03BB),03BBW03BB)~I} = (I).
We now apply the scaling relation (1.2) to (3.4); the result is

lim IP ~-zX(~~e~r(~) , W) E I - (I) . .
Taking r(A) = 1 - in the above, we obtain

lim IP{03BB-2X(e03BB, W) E I = (I) . .
This completes the proof of Theorem 1.

~1~. Proof of Theorem 2

The absolute continuity of  can be proved easily. In fact, if

n is the measure in R defined by

n(I) = KQ{K(I~[b1, b2]) K([b1, b2]) ; K([b1, b2)>1 n} ,
then n is absolutely continuous because

n(I) ~ nEQ{K(I~[b1, b2])}
= 2nI p(|x|, 0, 0)dx ,
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where p(t, ~ ~ ~ ) is the transition density of the Brownian motion with

absorbing barriers at +1 . . Thus j~ is absolutely continuous because

as 

We proceed to the proof of (3). Let K(I) = K(I, 0) be the local

time at 0 for the reflected Brownian medium as defined by (2.2) with

~ = 0 and consider the number of times d~(t) that the reflected

Brownian path ~W(u) : u  O} crosses down from E ~0 to 0 before time

t . Then as found p. 48)

(~..1) Q lim 2~d~(t) - K([~0, t;]), t>0~ = 1 .

0 J
Let a’, c’, b1 and b~ be defined as in the beginning of§3.

Lemma 7. For 0~ , ~3 ~ 0

~(l~,z) E e 
- aK(~O~b2~)-~c’ j - 2ot + 1 c(~3) . e ~ - e -~- ,

where

c(03B2) = 

e203B2 + e-203B2 e203B2 - e-203B2.203B2 .
In Particular, K([0, b2]) is exponentially distributed:

(4.3) EQ{e-03B1K([0,b2])} 
= 

1 203B1 + 1
.

Proof. Since C(03B2)~1 as 03B2 ~ 0 , (4.3) follows from (4.2) by

letting ~ ~, 0 . To prove (4.2) we first apply (4.1) to write down

(4.4) E Q e 
= EQ e-o(K ( (0, c’~ ) - 
= lim E Q e -2~~d~(c’ )- 
- lim e-203B1~n E Q e-03B2T~}n+1EQ~{e-03B2T0;T0T1}nEQ~{e-03B2T1;T 1T0} ,

where E~ denotes the expectation with respect to the probability

measure of the reflected Brownian motion starting at 6 and

T - W(u) = x~ .
If we set
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A, - , TpT1~ ’ ’
B~ - EQ e - ~T~ EQ e - (3T 1 ; T 1  T p ,

then (4.4) yields

(4.5) EQ{e-03B1K([0,b2])-03B2c’} = limg B~An~

= lim B~ 1 - A~ .

Next we make use of the well-known formula

Ex{e -03B1Ta;TaTb }= e203B1(b-x) - e -203B1(b-x) e203B1(b-a) - e-203B1(b-a) , a~x~b ,

where Ex denotes the expectation with respect to the probability mea-
sure of a standard Brownian motion starting at x . We then have

(4.6) EQ{e-03B2T~}= 2E0 {e -03B2T~; T~T-~ }
_ 
z(e~~ - 

=1 1 + 0(~z) ~ 1

(4.7) EQ~{e-03B2T0 ;T0T1} = e203B1(1-~) - e-203B2(1-~) e203B2 - e -203B2

= 1 - 203B2(e203B2 + e-203B2) e203B2 - e-203B2) .~ + o(~), ~~0 ;

(4.8) EQ~{e- 03B2T1
; 

e203B2~ - e-203B2~ e203B2 - e-203B2

~ ’~ _.&#x26; . 

From (4.6), (4.7) and (4.8) ) we obtain
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B~ 1 - A~1 203B1 + c(03B2).2203B2 e203B2 - e-203B2, ~ ~ 0 ,

which combined with (4.5) proves the lemma.

Given we set

K~ = K([;b~0)), K~ = K((0,x~), K~ = 

Lemma 8. For x>0 and t>0

(4.9) E Q{K3e-t(K1+K2+K3) ; xb2 }
= 2 (2t + 1)3EQ{(1-W(x))e-tK([0,x]); xc4 .

Proof. The left hand side of (4.9) equals

EQ{e -tK1} EQ{K3e -t(K2+K3) ; xb2 }.

. ~ 
r 

-tK-, ’B ~
Since ~ = (21 +1)’ by Lemma 7, for the proof of the lemma it

is enough to show

( 1(4.10) 
" 

" ; 

9 nf [ 2 1= 
~ E~ (1 - W ( x ))e "; x~c’ . .

(21 + 1)~ 
To prove this we introduce the smallest 03C3-field y on W which makes

W(s) , measurable and consider the event P that the shifted

trajectory W(’ + x) hits 0 before it hits 1 . Then first using the

strong Markov property of the reflected Brownian motion and then (4.3)~

we have

}
, , ~ = {l - 

" }

= 2 (2t + 1)2{1 - W(x)} , a . s .

Since {xb2}={xc’}~0393 and {xc’} ~ Fx, we have

EQ{K3e-t(K2+K3); xb2}

= EQ(e-tK2 :I[ {x  C I} of K 3 e-tK310393/Fx})
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= 2 (2t + 1)
2
EQ{(1 - W(x))e -tK2; xc’ }

,

proving (4.10) and hence the lemma.

Lemma 9. For 03BB > 0 and t > 0

(4.11) ~0e-03BBx EQ {(1 - W(x))e-tK([0,x]); xc ’}dx
~L ’ c + 2tS ,

where 

C - cos h 2~ ~ .

Proof. Let ~(x) - 1 - Ixl . Consulting with ~1~: Chapter 5~ , we

see that the left hand side of (4.11) equals f~(0) where f~ is the

continuous solution of

in (-1, 0) U(4, 1)

(~.lz) ~ ~ f. (o+) - f’ ( 0 -)} = :2 t f ( 0 )

~ f(-1) - f(1) - 0 .

To solve (4.12) we first find the solution g of ~f - ~ z f" _ ~ in

(-1,1) with boundary condition f(-1) = f(1) =0 and then express f.
as follows:

f03BB(x) = {g03BB(x) 
+ c for x~(-1, 0)

g03BB(x) + c sinh203BB(1-x) for xE (0, 1) .

If we determine c so that the above f~ satisfies the second condition
of (4.12), then the f~ is a solution of (4.12). Thus fB(0) can be

computed and we obtain (4.11).

Now Theorem 2 can be proved as follows. By Lemma 8 we have

((x,~)) = EQ{K((x, xvb2]) K([b1, b2])}

= EQ{K3 K1 + K2 + K3 ; xb2}

=~0
EQ{K3e-t(K1+K2+K3)

; xb2}dt
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= 

~02 (2t + 1)3 EQ{(1 - W(x))e-tK([0,x]) ; xc’}dt

and hence by Lemma 9

r~ r~
0e-03BBx ((x, ~))dx = 0 2 (2t + 1)3.1 03BB{1 - (2t + 1)S C + 2tS}dt
= 

2A 
- 

(2t+ + 1)~ 2 
. 

C+ + 2tS 
dt .

Thus integration by parts yields
CO 00

=~-- (notice that =~-)
~D 

CO 
0

= ~02S (2t + 1)2(C + 2tS) dt
=~0 Sdt (t + 1)2(C + tS) ,

and this proves (3).
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