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A MARTINGALE APPROACH TO SOME WIENER-HOPF PROBLEMS, I,

by

R.R. London, H.P. McKean, L.C.G. Rogers, and David Williams

This is one of two companion papers. This paper, I, studies how certain

of "Feller’s Brownian motions on [0,°°)" may be obtained from Brownian motion

via time-substitutions based on fluctuating clocks. Paper II starts afresh

with a look at time substitutions for symmetrizable Markov chains; and in that

context it is possible to see rather more clearly what is going on. Much of

the fascination of Wiener-Hopf theory lies in the difficulty of obtaining

explicit answers in concrete cases. The second half of Paper II is a detailed

analysis, partially motivated by our study of the chain case, of a concrete

example of the problem discussed here in Paper I; and whether or not it makes

good reading, it was fun to do.

1. Introduction and summary

1.1. Let 0} be a Brownian motion on IR with B 
= 0. Let

{Lt(x):t ? 0, x E IR} denote the jointly continuous local-time process of B,

normalised so that for each x,

~ 

IBt - xl - Lt(x)
is a martingale. Hence L is twice the standard Brownian local time of

Ito-McKean [~ ] .

Let m be a measure on (-00,0]. Note. ’Measure’ always implies:

’taking values in 

Define the additive functionals:

(1a) 03C6+t ~ t0I(0,~)(Bs)ds, 03C6-t ~ (-~,0]Lt(x)m(dx),
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~t - ~t - ~t ~ ’
the random time changes:

(Ib) > t}, > t},

, 

= > t}, T t 
=  -t},

and the time-changed processes:

(Ic) ’ 

In these definitions, we make the usual conventions:

t ? 0, inf ~ ~ oo, 3 (coffin state)

and allow the usual notational switches B(t) = B , , etc..

Note that }) can be the most general continuous increasing additive

functional which grows only when B e (-00, OH. See §5.9 of Ito-McKean [4 J.

Notice however that we do not require m to be a-finite; for example, we

allow m to assign infinite mass to a singleton set {~} with ~ ~ 0.

Define :

a = inf{u:mCu,OJ  00} >_ -co.

Then as far as the process Y is concerned, the values of m in (-00, a)

are irrelevant; they come into play only when B has entered (-°°,a), but

by that time, {) is infinite and Y is dead. We therefore make the

convention:

(2) if a = inf {u:mCu, OJ  ~} .> oo, then

’ 

m[a,0] = oo,

0 if m(a,0)  oo,

0 if m(a,0) = oo.
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We emphasize that throughout the whole paper, m is understood to satisfy

convention (2). .

The possibility that ~ can jump to infinity requires us to specify the

lifetimes ~(X ) of X and ~(Y ) of Y more precisely.

Let p" = Then

(3) ;(X’) = lim ~ , , ~(Y ) - -inf ~ . .
sfip 

s 
sp’’ 

s

+
1.2. We wish to study the law of the process Y. It is easy to show

that

4(i) Y + is a strong Markov process with state-space !10,oo) ;

and it is clear that

4(ii) Y behaves as a Brownian motion while inside the open interval (0,oo),

so that if G+ is the infinitesimal generator of Y+, then G+f = ~f"

within (0,oo). . 

The results 4(i) and 4(ii) exactly comprise the statement that Y is a

Feller Brownian motion in the sense of §5.7 of Ito-McKean [4]. Now the

domain of the infinitesimal generator of an arbitrary Feller Brownian motion Z

is specified by a side condition of the following type:

(5) plf (4) - + [f(x) - 
.

where pl, , p2 and p3 are nonnegative constants, p4 is a measure on 

such that

(6) (1 - oo,

and f ’ ( 0 ) = f ’ ( 0+) , f "( 0) = f "( 0+) .
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Condition (5) must be non-trivial in that (P1’p2’p3’p4) ~ (0,0,0,0).

The law of Z is completely determined by the quadruple of

’characteristics’. Moreover, the law of Z determines the quadruple of

’characteristics’ provided we consider quadruples projectively (identifying

two quadruples which are (strictly positive) scalar multiples of a fixed

quadruple). The number p1 corresponds to the killing rate at 0, p2 to

the continuous-exit rate at 0, p3 to the degree of stickiness at 0, and

p4 is the Levy kernel describing jumps from 0 back into (0,°o). Different

normalisations of the quadruple of characteristics correspond to different

normalisations of the ’local time’ of Z at 0. (We have put ’local time’

in quotes because Z may visit 0 only at a discrete set of times.)

1.3. One of the principal results of this paper is the following theorem.

(7) THEOREM. Let Z be a Feller Brownian motion with characteristics

(P-.~Po~P~’P~)’ Then there exists a measure m on (-°°,OJ such that Z is

identical in law to the time-changed process Y if and only if

(8) p3 - 0 and p4(dx) - dx I e -rx J(dr)
(0,°°)

for some measure J on (0,oo) satisfying the following obvious equivalent

to (6): :

(9) jr(r+  °° .

Moreover, the measure m is then uniquely determined by the law of Y

(equivalently by the triple 

[Note. The probabilistic reason why p,. 
= 0 for Y is ’obvious’, for we

need only show that
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measure 0} - 0,

and this ’must’ hold since ~+ has ’no L t (0) component’. We shall

give a proper (analytic) proof later.]

Of course, the ’abstract’ statement of Theorem 7 needs to be complemented

by the more interesting solution to the ’practical’ problem: How does one make

explicit the one-one correspondence between measures m and triples (pl,p2,,,T)
(considered projectively)? The solution is described in §1.7 after we have

introduced the necessary terminology.

1.4. Our basic method is the ’martingale-problem’ approach to this type

of problem employed in Barlow-Rogers-Williams c1 1 ] and Rogers-Williams 

For each 0 > 0, we find a bounded function f on IR such that

(10) defines a martingale M8.(10) t t 5 tut defines a martingale M03B8.

Since Me is bounded on each interval of the form CO,T;], we may apply the

optional-sampling theorem to deduce that

is a martingale,

whence, with G again denoting the infinitesimal generator of Y , we have

(11) f e E ~(G+) - -~82f e ). °
Our hope is that on feeding the information (11) into formula (5), we can

+
determine the characteristics of Y ; ; and this proves to be

justified.

Note. We need to be rather careful in checking the validity of the above

application of the optional-sampling theorem because of the possibility that

T = °°. Now, of course, f~(a) - 0, by the usual convention. So the

essential thing to prove is that (except on a null set of w)
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[-~  03C6u  t (Vu)] ~ [lim M03B8u = 0].

But it is easy to show that if -oo  ~ u  t (Vu), then ~ u -~ -°o. (For example,

consider the Levy process 03C6°  
1 

introduced later.)

1.5. Consider the problem of finding a bounded function fe on R such

that Me, as defined at (10), is a martingale. Since we must have

f"03B8 = -03B82f03B8 on (0,~), we can take:

(12) = 9 on (0,~).

We have chosen the normalisation: 1 for reasons which will emerge

later.

Recall the definitions of 0+ and X+ _ B(c+) at (lb) and (lc). Of

course X+ is a reflecting Brownian motion with standard local time at 0

before t equal to A(o ), where A is standard local time at 0 for B:

h(t) _ 

With apologies for the conflicting use of o’s (!), we define:

F(t) ~ 03C3{B(s):s ~ t}, (t) ~ 03C3{X+s:s ~ t} ~ F(03C3+t).

Since the martingale Me is bounded on each interval of the form

[O,OtJ, the optional-sampling theorem implies that

Me(c+) - 
is a martingale relative to the filtration {j(o )}. Hence, the ’optional

projection’

defines a martingale relative to the filtration { (t)}. Utilising the
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independence of the ’up’ and ’down’ excursion processes from 0, and some

standard independent-increment properties, we have:

(13) = 

where c9 is determined via the equation:

(14) exp(-c e t) = E 

where, of course, A (t) = inf{u:A(u) > t}. The fact that the expression

at (13) defines a martingale implies that

f~ E d.’(~ ) and 

where ‘~’ 8 is the infinitesimal generator of elastic Brownian motion with

killing constant c . See §2.3 of Ito-McKean [4]. Hence, fe must satisfy

the boundary condition:

fe(0) - 

and we have (using (14)):

= c 8 1 - 

- E 
f expE-~6 2 (() (A 1(t)) ]dt

= E 
f 

- 

C 0, ~ (X ) )

By a further elementary application of the optional-sampling theorem to (10),

the reader can easily show that
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(15) Ex 
_ 

(a  x _ 0)

’’Eo,~(x’))

where a is as in (2), and Ex is the usual expectation associated with the

law P of B started at x.

1.6. Suppose for a moment that m is finite and strictly positive on

every compact subinterval of Then X- is a diffusion process on

and is the standard local time of X- at 0. See §5.4 of

Ito-McKean Hence,

(16) = (~ - ~e2)

where r.(.,.) is the resolvent density function for X relative to the

measure 2m. In particular, the function f,. on may be calculated

as the unique bounded non-negative solution of the equations:

(17) 
d d 

f - e2f on (-~,0), fr(0) - 1.

See §5.4 of Dym-McKean [Remark. Since the first equation at (17)

implies that fe is absolutely continuous relative to Lebesgue measure with a

density fe satisfying,

f’03B8(c) - f’03B8(b) = 03B82(b,c]f03B8(x)m(dx) (b  c).

it follows that fe(0) is well-defined.] It is a standard piece of spectral

theory (see §5.5 of Dym-McKean that

f (0) = = 

for some measure G on [0,oo).
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If we relax the assumption that m is finite and strictly positive on

every compact subinterval of (-°°,0], then (17) still holds, but now we have

(18) f03B8(0) = 03B3 + [0,~)G(dr) r2 + 03B82,

where -y = inf{u  0:m[u,0] = 0} and G is again a measure on [0,°o).

[Note. A certain amount of poetic licence may be needed in the interpretation

of (17) when for some a. Then 0, and we may need

licence to interpret 0 x ooj.

We thought it instructive to derive the analytic form of f,, from the

assumption that M is a martingale. We leave the reader to check the converse

result, the one we really need: viz., that if f~ has the analytic form we have

described, then Me is indeed a martingale.

1.7. The deep and very remarkable inverse spectral theorem of Krein

(see Dym-McKean [~H) tells us that (17) and (18) put measures m satisfying

(2) into one-one correspondence with pairs (Y,G), where

(19) y ? 0, (r2 + 1) -1 G(dr)  ~, and G = 0 if y = m.

We shall prove that if the pair (Y,G) satisfies (19), and if fe(0) is

defined by (18) and f~ on (0,~) via (12), then the quadruple (P1’p2’p3’p4)
is determined uniquely (modulo multiplication by scalars) by the fact that

fe satisfies (5) for all 8 > 0. If we temporarily assume (8), we are led via

(18), (12), and (5) to the relation:
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(20) 03B3 + [0,~)G(dr) r2 + 03B82 = p2 + (0,~)J(dr) r2 + 03B82 p1 + 03B82(0,~)J9dr) r(r2 + 03B82)

But we shall prove analytically that equation (20) sets up a one-one

correspondence between pairs (y,G) satisfying (19) and triples (p.,~P~J)

(considered projectively) where p ~0,p ~0, and J satisfies (9).

Hence, of course (8) must hold, because of the fact that (P.~P~~O.p )
is determined by the values f-(0).

We sketch a proof that

(21) P2 + " ~ ~O~(Y-)) 
so that the numerator on the right-hand side of (20) may be regarded as the

’resolvent density’ for the process Y . This means that the J

measure arises from the spectral decomposition of the transition semigroup of

the Y process. At first sight, equation (21) is therefore rather surprising

because, except in trivial cases, the process Y is not symmetrizable. (In

general, Y will make jumps from 0, but not to 0.)

1.8. We are of course aware that (20) corresponds to a Wiener-Hopf

factorization of the Levy (independent-increments) process ()) o A , and

that, especially, the fine Greenwood-Pitman paper F~ ~ provides much
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probabilistic insight.

However, it would be totally wrong to imagine that everything of interest

n
in the present paper can be attributed in some way to the ’dominant’ role of

the process $ oA ’ Indeed, Paper II makes it clear that the way in which the

spectral decomposition of the transition semigroup of Y governs the law of

Y reflects a general principle for Markov processes. Paper II also gives

some explanation, rather than only verification, of why the p4 measure for

Y is completely monotone.

1.9. In §3, we show that the martingales M at (10) form a ’full’

family in a stronger sense than is implicit in various uniqueness assertions

made above. In particular, we show that for x  0, the Px law of Y~
is UNIQUELY determined by the Wald identity (optional-sampling result):

0.

This key uniqueness theorem is obtained as a consequence of the Wiener-Hopf

factorization (20) of f.,(0).
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2. Proofs. .

2.1. Let m be given. For 6 > 0, the value f8(0) corresponding to m

has the form:

(22) f
03B8 (0) = 03B3 + [0,~)G(dr) r2 + 03B82

where y and G are as at (19). Also,

fe(x) = f03B8(0)cos 6 x + 03B8-1sin 6 x (x E ,

and f8 satisfies Feller’s side condition (5). Hence, we have the key

relation:

(23) f (0) [p - ~82p + (1 - cos 8 x)p 4 (dx) ]
= 

p2 + °

[Note. The ’extreme’ cases: .

m(-oo,0] = 0 corresponding to ~Q0) = °° and (pl’p2’p3’p4) - (0,1,0,0,),

and

m{0} = ~ corresponding to f~(0) - 0 and (pl’p2’p3’p4) - (1,0,0,0),

will henceforth be ignored.]

(24) LEMMA. p3 = 0.

Proof. We examine the orders of magnitude of the various expressions

occurring in (23). First, note that

(03B8-1sin03B8 x)p4(dx) | ~ 03B40xp4(dx) + 03B8-1~03B4p4(dx).



53

Given e > 0, we can first choose 6 so that the first term on the right-

hand side is less than ~E, and then choose 60 so large that the second

term is less than ~e when 6 > 6 . . Hence,

(03B8-1 sin 03B8 x)p4 (dx) = o(1) as 03B8 ~ ~.~ 4

Next,

f f r 
.

(1-cos03B8x)p4(dx)| ~ 

0 1 - cos03B8x|p4(dx) + 21p4(dx)

1 ~

~ 03B80xp4(dx) + 21 p4(dx) = 0(03B8).

Since we are ignoring the case when f.,(0) = 0,V6, we see from (22) that

e~f~(O) ~ K E (0, ~] as 8 ~h oo. On dividing (23) by 62f 8 (0) , we see that

-p3 + 0(03B8-1) = p2 03B82f03B8(0) + o(1).

If K = oo, we see that p,. 
= 0; and if K  oo, we obtain = K - 1 p2,

so that (since p2 >_ 0 and p3 >_ 0) we must have p3 
= 

p2 
= 0. D

[Note. The reader should perform the exercise of spelling out the more

informative probabilistic proof described after the statement of Theorem 7.]

(25) THEOREM. The quadruple (pl,p2,0,p4) is uniquely determined (modulo

scalar multiples) by the fact that equation (23) holds for every 6 > 0.

Proof. This proof is a modification of the proof due to Kingman which was

given in §5 of Rogers-Williams [6].

Let

N E {z : Im(z) >_ 0}, IH+ _ {z E ~ : : Im(z) > 0}.
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Define a mapping h : as follows:

(26) h(z) _ p - izp2 + (0,~) (1-eixx)p4(dx).
(Thus, h(z) measures the extent to which xr+ eizx fails to satisfy Feller’s

condition (5).) Then h is continuous on ~i and analytic in It is

clear that 

Re(h) ? 0 on IH, Re(h) > 0 on Hi .

(Recall that pl 
= 0 and p4 is the zero measure exactly when = 0.

This case is one which we have agreed to ignore.) It follows that the function:

logh = log ( h I + i arg (h)

may be defined as an analytic function on with arg(h) taking values in

( 2 ’ ’ 2)‘ for 6 E 18 ~{0}, equation (23) states that

(27) f e (0)Re(h(6)) - -8 lIm(h(8)).

If Re(h(a)) - 0 for some a E then pl 
= 0 and p4 is concentrated

on a series of points in arithmetical progression, and {6 E Rt: Re(h(6)) - 0)

is countable. Hence, in every case, for almost all 8 ~ IR ,

(28) lim arg(h(z)) - arg(h(8)) - -tan 

z-~8

. 

+

Since the boundary values of the bounded harmonic function arg h(z) on H

are known almost everywhere on IR, the function arg h(z) is determined in

m+. . Hence the function log h(z) is determined in H +‘ ’ up to an additive

+

constant, so that the function h(z) is determined in ~i up to a

multiplicative constant. In particular, the values

(29) h(i6) - pl + p26 + (1 - (g > 0)
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are determined up to a constant multiplier; and, by standard results, so too

is the quadruple (pl’p2’0’p4)’ 
, 

D

Note. In §3 below, we present a deeper uniqueness result which is more useful

in practice.

2.2. We continue on the course mapped out in §1.7. 
’ 

If we assume (8) and

substitute (8) and (22) into (23), then we obtain the following equation,

previously labelled as (20):

(30) 03B3 + G(dr) r2 + 03B82 = 

We shall prove the following theorem.

(31) THEOREM. Equation (30) sets up a one-one correspondence between pairs

(y,G) satisfying (19) and triples (pl,p2,J) (considered modulo scalar

multiples) where pl >_ 0, p2 >_ 0, and J satisfies (9). 
,

Let us briefly recall the logic of the situation. A measure m determines

a pair (y,G). Part of Theorem 31 guarantees the existence of a triple

(P1,P2,J) such that (30) holds. Theorem 25 guarantees that

(32) p4(dx) - dx e -rx J(dr)
and also that (pl,p2,J) is unique. Conversely, if a triple is

given, then Theorem 31 guarantees the existence of a unique pair (y,G) such

that (30) holds, and Krein’s inverse spectral theorem guarantees existence and

uniqueness of the corresponding m.
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Remarks on Theorem 31.

(a) On substituting equation (32) into the definition of h(iz), where

h is as at (26), we obtain

h(iz) = pl + p2z + 

= 

p1 + p2z + 
zJ(dr) r(r + z)

,

so that if z = a + is, then

(33) Imh(iz) = p203B2 + 

03B2 +|r +z|2 J(dr).

Now, we already know from the proof of Theorem 25 that Im(h(iz)) defines a

nonnegative harmonic function in the first quadrant. From the analytic point

of view, the fact that (33) holds - equivalently, the fact that p4 has the

form (32) - exactly corresponds to the fact that Im(h(iz)) extends to a

+

nonnegative harmonic function on the whole of BI , and that J ’reflected

in 0’ is the Poisson representing measure of this function. See §1.2 of

Dym-McKean [2~. We are unable to give a direct proof of the described

extension property of Im(h(iz)).

(b) Theorem 31 is ’similar in spirit’ to a number of known results.

For example, see Kingman [5~ and work of Reuter and others cited therein.

(c) As remarked earlier, some kind of explanation (rather than

verification) of Theorem 31 is provided in Paper II.

2.3. Obtaining (pl,p2,J) from (y,G) : discrete case. On taking

z = 6 , we see that the following Lemma states that if y = 0 and G consists
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of atoms of masses Gi at points r(ui) (0 _ i _ n), then (30) holds where

pl p2 - 0 and J consists of atoms of masses Ji at ~(vi) (0  i _ n).

(34) LEMMA. Suppose that Gi > 0 (0 _ i_ n) and that

o - 

Then there exist strictly positive constants J. (0  i _ n) and

vi with

(35) 0  03BD0  1  03BD1  ...  un  03BDn

such that for all z in E (with the obvious interpretation at various poles)

,~_
(36) 03A3 Gi z + 

i 
= 

.

Proof of Lemma 34. First, assume that (36) holds. Let z -~ 

-v~ in (36)

to obtain:

03A3Gi i - 03BDj = 

-1 (03BDj).

Hence, the values B~. must be roots of the equation:

(37) 03A3 Gi x - i = 1 x.

But, on sketching the graphs of the two sides of (37), we see that (37) has

exactly (n + 1) roots within and that the order-

relations (35) hold.

On putting z - 0) in (36), we obtain:
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Jk
(38) 03A3Jk (03BDk - i)(03BDk) = 0 for 

We are entitled to augment (38) by the ’normalisation’ condition:

(39) k Jk (03BDk) = 1.

Some elementary manipulations on determinants allow us to solve (38) and (39)

explicitly to obtain:

(40) 
Jk (03BDk) 

= 

,

and it is immediate from (35) that > 0, so that Jk > 0.

Now, we can multiply (36) by

[03A3Jk (z + 03BDk)(03BDk)][(z + i)][(z + 03BDj)].
Then (36) asserts the equality of two polynomials P and Q (say) where

P-Q is of degree at most 2n + 1. But what we have proved is that if we

to be the roots of (37) satisfying (35) and define

the constants Jk via (40), then the polynomials P and Q agree at all

(2n+2) points listed at (35). Hence the polynomials P and Q are

identical, and the lemma is proved. D

2.4. Obtaining (pl,p2,J) from (~y,G):, ’ general case. Now let

(y,G) be any pair satisfying (19). For 6 > 0, we can write
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Y + [0,~) G(dr) r2 + 03B82 = [0,~] r2 + 1 

r2 + 03B82 
(dr)

where

(41) G(dr) - (r2 + 1) -1 G(dr) on (0,~), Y.

n
Since we are ignoring the case when Y = ~, the measure G is a bounded

*
measure on In the sense of weak convergence of bounded measures on

n n(n)
we can approximate G by measures G each consisting of an atom

at 0 together with a finite number of atoms within (0,~). From Lemma 34,

we know that

f r(2 + 12 
(42) f r2 2 + 1 Z G n(n) (dr) - 

+ 8

[0,~]03B82(r+1) 
r2 + 03B82 (n)(dr)

for some atomic measure on which we can take to be a probability

measure. If J is any weak * limit of J(n) as n -~ ~, we have

03B3 + [0,~) G(dr) r2 + 03B82 
= 
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P2 + (0,~) J(dr) r2 + 03B8 2

- (~~°°)
_ 

,

p1 + 03B82 (0,~) J(dr) r(r2 + 03B82)
where

J(dr) - r(r + 1)J(dr) on (0,~),

P1 - p 2 
- J{°°}.

*2.5. Obtaining (Y,G) from (pl,p2,J), Because the weak -convergence

argument goes through smoothly, it is enough to deal with the case when

pl 
= 

p2 - ~ and J consists of finitely many atoms. So, assume that

Ji (0 _ i _ n) and i _ n) are strictly positive numbers, and that

v1  v2  
...  vn.

We must show that (36) holds where u~ 
= 0 and ui (1 _ i _ n) and Gi

(0 _ i _ n) are strictly positive.

Clearly, we define to be the unique numbers satisfying

the order relations (35) which are roots of the equation:

Jk
E (v _ x) (v ) _ 0. .

We put u0 
= 0. On comparing the residues of the two sides of (36) at

x = and using l’Hopital’s rule in the usual way, we see that we must take

Jk
E

(43) G. _ 

k vk _ ui 
_(43) G. 1 = 

~k) 
2 

(1 " 1,2,...,n)

k fvk_ ui) 
2
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But for  > 0,

Jk 03BDk -  >  03A3 Jk (03BDk - )(03BDk) ,

- 03A3 Jk 03BDk -   -  03A3 Jk (03BDk- )(03BDk).
Hence for i = 1,2,...,n,

03A3 
Jk 03BDk - i 

> ( i)03A3Jk (03BDk- i)(03BDk) = 0,

and Gi > 0. Of course,

(44) GO = > 0.

To show that (36) must hold if the G. (0  i ~ u) are defined via (43)

and (44), we can apply the ’polynomial’ argument at the end of §2.3, or else

appeal to the Mittag-Leffler theorem.

The proof of Theorem 31 is now complete.

2.6. Notes on equation (21). The Greenwood-Pitman paper C3] explains

very clearly the probabilistic significance of equation (20) viewed as a

Wiener-Hopf factorization of f) o A’ , and equation (21) makes up one part of

the Greenwood-Pitman path decomposition.

The partial result provided by equation (21~ also admits a direct proof

by our martingale method. If m consists only of a finite number of atoms

within (-o°,0], then we can find a bounded function ge on IR such that

N03B8t ~ exp(-03B82t)03B8 (Bt) defines a martingale N03B8 ;
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and we can prove (21) by applying the optional-sampling theorem to Ne.

A weak -convergence argument completes the proof.

Paper II points to a simple proof of (21), and to some substantial

generalisations.

3. The key uniqueness theorem

Let f03B8, M03B8, p1, p2, J, etc. have their now-f amiliar significance.

Suppose that B starts at x where x  0. By applying the optional-

sampling theorem to the martingale M~ of (10) at time T;, we obtain:

(45) 0) .

We shall prove that the P~ law of is uniquely determined by (45).

Now, if pl 
= 0, then the Px law of Yt is a probability measure,

while, if P1 > 0, then the PX law of Y: is a measure of total mass less

than 1. The desired uniqueness result is therefore an immediate consequence

of the following theorem.

(46) THEOREM.

(i) Suppose that ul and u2 are probability measures on the open

interval (0,~) such that 
,

(47) ~e > 0.

Then ul 
= 

u2’

(ii) Suppose that pl > 0. If p and u2 are finite measures on

(0,oo) such that (47) holds, then u - ~ .
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Notes.

(a) Observe that part (i) would be false if the interval (0,°°) were

replaced by E0,°o). For if pl 
= 

P2 
= 0 and p4 is a probability measure,

then in the functional notation for measures, we have p4(fe) - 
V6 > 0, where 6 is the unit mass at 0.

(b) The case when f (0) = oo must of course be interpreted as the

cosine-transform theorem. We continue to ignore that case.

Proof of (i). Suppose that ul and u2 are probability measures on (0,~)

such that (47) holds. Because of the Wiener-Hopf factorization (30), we may

rewrite (47) as follows:

(48) V6 > 0,

where

F,(V) - 9 + + p1 + ,8 ( y) p2 
+ 

r 2 + 6 2 
os 6y + 

8 2 + r 
sin 8y , J

K(dr) being the r of our previous notation. Recall that

 oo.

As before, define

IH E {z E 0}, = {z E > 0},

h(z) ~ p1 - ip2z - izK(dr) r - iz.

Then h is analytic in IH + and continuous on IH. Moreover, if z = a + ib

(of course, a no longer has the significance it had at (2)), then
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(49) Reh(z) = P1 + + b(r + b2 + a2 K(dr) 7- 0 on IfI B{0},

so that on IHB{0}.

For j = 1,2, define 3 ~ by the equation:

(50) p.(z) = (1 _ eizY) u . J (dY) - 1 - ,

and for z E ~iB{0}, define:

(51) ~’~(z) = ~

Then Y’ is analytic in and continuous on RiB{0}.

Now, equation (48) states that 
’

(52) Im’Y2(6), d8 > 0.

Moreover, it is trivially true that

(53) ImY’1(i8) - d6 > 0,

because both sides of (53) are zero. We would like to conclude that

(54) Im’Y2(z) for all z in the first quadrant.

To do this, we need to establish appropriate growth conditions. But let us

assume for the moment that (54) is proved. Then

= f2(z) + c in the first quadrant,

where c is a real constant. Thus, from (50) with z equal to (or, if you

prefer, tending to) i6 with 6 > 0, we obtain
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(55) (1- e 1 (dY) - (1- e + + p203B8 + (1- e ].

By examining what happens when 8 + ~, it is trivial to show that c = 0.

[Note that it is here that we need the fact that the u~ are probability measures

on (0,~) not Hence ul 
= 

u2. 

We must now prove (54). To ensure that a function g, which is harmonic

in the open first quadrant and continuous on the closed first quadrant except

perhaps at 0, is determined by its values on the edges of the quadrant, it is

enough to show that g is bounded near 0 and that g(z) = 0(Izl) as

|z| ~ ~. We apply this principle not to the function but to the

function ’Y.(1/z), that is, to the function z 
1 

defined on the fourth
J J

.

quadrant. Translating back to the first quadrant, we see that to prove (54),

we need to establish:

(56) 03C8j(z) is bounded near 00 (within the first quadrant),

(57) z03C8j(z) ~ 0 as z ~ 0 (within the first quadrant).

Note that 2 on IH. From (49), pl on IH, so that if

p1 > 0 then (see (50) ) 2p 1 on IH, and (56) and (57) follow.

It remains to prove (56) and (57) when pl 
= 0. [As usual, we ignore the

case when (p2 ~ 0 and) the measure K is zero. The theorem is classical in

that case.~ From (49),

Ih(z)I I > 
+ a2 K(dr)

(r+b) + a

~ 1 2a2 + b2 r2 + a2 +b 2 K(dr) ~ 1 21 r2 + 1 K(dr)
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when |z| ~ 1; and (56) follows. Next,

z’Y.(z) - u .(z) C- ip - J J ’I L 2 r - 1Z

But -~ 0 as z -~ 0, and if a2 + b2  ~2, then

~ 

I p + K{dr) 1 ~ p + f {b + r)K(dr)
2 + r - i6~ 2 + 2 2

(r + b) + a

~ p2 + 1 2 rK(dr) r2 + ~2
r + e

The result (57) follows, and the proof of part (i) of the theorem is complete. CJ

Proof of (ii). Assume that pl > 0. Suppose that ul and u2 are finite

measures on (0,~). Using the modified definitions:

u . (z) - ( J = 1 ~ 2) ~
J J

we transfer the proof of part (i) in the obvious way, the bound pll
making everything easy. 0
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