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ON SKOROHOD EMBEDDING IN n-DIMENSIONAL

BROWNIAN MOTION BY MEANS OF NATURAL

STOPPING TIMES

by

Neil Falkner1

ABSTRACT

Let p be a measure on ~n whose electrostatic potential
is well-defined and not everywhere infinite. Let (Bt) be Brownian.

motion in ~n with law(BO) = p . We give sufficient conditions for

a measure v on ~n to be of the form law(BT) where T is a nat-

ural (ie., non-randomized) stopping time for (Bt) which is not "too

big". (If n > 3 , any stopping is not "too big" but if n = 1 or 2 ,

some stopping times are "too big"). If the measure p does not charge

polar sets, the conditions we give are not only sufficient but neces-

sary.

1. INTRODUCTION

Let be Brownian motion in Rn . In

this paper we consider questions of the following sort : let p and

v be measures on Mhen can one find a stopping time T such

that 
’

v(dx) = 

We emphasize that the fields Bt are the usual completed
natural fields of the process (Bt) and that when we speak of a stop-

ping time we mean a stopping time with respect to these fields. Thus

the stopping times we consider are natural stopping times rather than

randomized ones.
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Skorohod [1] was the first to consider these questions. He
considered the case n = 1 , u = the unit point mass at 0 , v a

probability measure on R such that f x2 dv(x)  oo , J* x dv(x) = 0 ,
and he obtained a randomized stopping time ~ such that v(dx) = P~(B L Edx)
and  ~ . Dubins ~l~ and Root ~1~ considered the same case and

obtained, by different methods, natural stopping times T such that

v(dx) = and E~(T)  co . Rost [1 and 2] considered ques-
tions of this sort for general Markov processes and obtained random-
ized stopping times. Baxter and Chacon [1] considered the case of

general n and showed that under suitable hypotheses, which included
the supposition that the potential of v be finite and continuous,
it is possible to find a natural stopping time T such that v(dx) =

In this paper we improve the result of Baxter and Chacon

by eliminating certain of their hypotheses, including the hypothesis
of continuity of the potential 1 of v and "part of" the hypothesis of
finiteness of the potential of v. . Our result is still not the best

possible however, as we show by an example.

2. THE CASE OF A GREEN REGION

Throughout this section, D denotes a Green region in IR"
with Green function G and ~ is the stopping time defined by

= inf {t > 0 : D} . .

For any measure y in D , Gp : D -~ is defined by

Gp(x) = D G(x,y) dp(y) (xe D) .

One says Gp is a potential iff it is not identically infinite on

any component of D . (We remark that if u is finite then Gp is

a potential, but not conversely). If T is any stopping time then

uT will denote the measure in D defined by

= T  ~) . .
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That is, T is the measure obtained by letting p diffuse

under Brownian motion up to the random time T where only paths of

which stay in D for the whole random time i nterval 

contribute to The question we consider is:

Given p such that Gu is a potential, what measures v

in D are of the form v = p-r for some stopping time T ?

We shall make extensive use of classical potential theory
and of the connections between Brownian motion and classical potential

theory. For the former, the reader may consult Helms ~l~ and Brelot

[1 and 2]; for the latter, Rao [1] and Blumenthal and Getoor [1].

The following lemma gives necessary conditions for v to

be of the ° 

.

2.1. LEMMA

Let p be a measure in D such that Gu is a potential
and let T be a stopping time. Let v = uT .

Then:

a) Gv. (Thus v is finite on compact subsets of D ).

b) There is a Borel set C c D such that v(Z) = p(ZnC)
for every Borel 1 polar set Z c D .

Proof : :

a) For any non-negative Borel function f in D we

have

J f(x) Gp(x) dx = f(Bt) dt]
and

f f (x) Gv ( x ) dx - = f (Bt) dt] .
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Hence Gv a.e. ~dx~. But then Gv throughout D

as Gu and Gv are hyperharmonic functions.

b). As T is a natural stopping time, 
for all x, by the zero-one law. Let C = D : PX(T=0) = 1}.

C may not be Borel but at least it is universally measurable, which is

close enough. If Z is any polar subset of D then Z for some

t > 0) = 0 so certainly P (BT C Z, T > 0) = 0. Thus v (Z) = ?(Z n C)

for every universally measurable polar set Z CD.

Remarks : Clearly the proof of part a) shows that if S and

T are stopping times with S  T then This inequality remains

valid for randomized stopping times Q  T but for part b) we need the
fact that T is a natural stopping time.

Let us also point out another way of phrasing b). Note that
~Gv = "} is a polar set and v does not charge polar subsets of

(Gv  Thus b) can be expressed more explicitly as follows : there is a
Borel set C ~ D such that v (Z) = for all Borel sets

Z = .}.

We conjecture that conditions a) and b) of the lemma imply that
there exists a stopping time T such that v= PT but we are unable to

prove this. We can however prove the following weaker result.

2.2. THEOREM

Let p and v be measures in D such that Gp and Gv are

potentials. Suppose Gv in D and u(Z)  v(Z) for every Borel

set . Then there is a stopping time T such that v= p.r.

Remarks :0nce we have T, it follows from 2.1 (b), and’ from
the fact that v does not charge polar subsets of {Gv  that

v(Z) = u(Z =co}) for every Borel polar set Z This is why
the theorem is weaker than the conjecture. Let that for the

case when 11 does not charge polar sets, the theorem completely characterizes

the measures v which are of the form p-r for some stopping time T.
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So that the ideas in the proof of the theorem will not be lost

among a mass of asides, we first establish some preliminary results.

2.3. NOTATION

A property which holds except on a polar set will be said to hold

quasi-everywhere, abbreviated q.e. If u is a non-negative superharmonic
function in D and E ~ D then among all the non-negative superharmonic
functions v in D such that v > u q.e. on E, there is a smallest one

which we denote by bal(u,E), read "the balayage of u over E". We write

reg(E,D) for the set of regular points of E in D ; that is, the set

{x  D : u(x) = bal(u,E)(x) for all u superharmonic and > 0 in D).

One can show that EBreg(E,D) is a polar set, that reg(E,D) is

a and that reg(E,D) is equal to the set of fine accumulation

points of E in D, if n > 2, or the closure of E in D, if n=l.

If p is a measure in D such that Gu is a potential then 
.

is the potential of a unique measure v in D which we denote

by read "the balayage of p onto E". One can show that 

lives on reg(E,D).

TE denotes the first hitting time of E : TE(w) = inf{t> 0 : 
If E is a Borel set (or just analytic) then TE is a-stopping time and we have
the well-known formula

bal(u,E)(x) = Ex(u(BT ) })

for any non-negative superharmonic function u in D.

2.4. LEMMA

Let p be a measure in D such that Gu is a potential. Let
E be a Borel subset of D and let T=TE. Let v = uT. Then

a). for all D, Gv(x) = 1{T ~ }).
b). v = 

Proof :

Clearly a) and b) are equivalent. Let us prove a). For any
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bal(G(y,.),E)(x) = bal(G(x,.),E)(y) ; see Brelot ~I, p. 15]. Thus

1{T  ~}) = 1{T  ~})
= bal(G(y,.),E)(x) = 

= u(dY) 1{T  }) = E~‘(G(x~BT) 1{T  ~)
= L(dz) G(x,z) = = Gv(x).

2.5. COROLLARY

Let p be a measure in D such that Gu is a potential. Let U

be a Borel finely open subset of D and let T=T Then = 0.

Proof :

By 2.4, p-r = Therefore p-r lives on

But Uc since U is finely open.

2.6. COROLLARY

Let p be a measure in D such that Gu is a potential. Let v

be a superharmonic function in D such that v. Let U be a Borel

relatively compact subset of D and suppose there is a function h which

is harmonic in a neighbourhood of U such that h > v on U. Let

T=T U c. Then v in D.

Proof :

For x E reg(Uc,D) we have 0) = 0 so = 

by 2.4. Suppose x~ U. Then  ~) = 1 since U is relatively compact
in D. Also for and for every U {0} we

have Now Gu need not be continuous but nevertheless
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is continuous on [0~(~)) for pX - a.a. w . Therefore

a.s.. From 2.4 we then obtain EX(h(BT))’
But = h(x) as h is harmonic in a neighbourhood of 7. Thus

we find that v except possibly on the set But

this exceptional set is polar. Therefore throughout D.

2.7. LEMMA

Let v be a measure in D such that Gp is a potential. Let

(T.) be a sequence of stopping times converging pointwise on Q to a

random time T.

Then :

a) T is a stopping time

b) For any Borel function ~ in D such that

 m

we ~(x) 

(One can deduce from this that

-)- ~ dp~.
for any continuous function ~ with compact support in D but we shall

not need this).

Proof :

a) follows from the right continuity of (~)- Let us
prove b). Consider the decreasing process

Zt = 03B6t^03B6 03C6(Bs)ds (0 ill-).

For any stopping time S we have

= 
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Also, for w E f ZD  to} the map t H iS continuous on

proof may now be concluded by applying the Lebesgue dominated
convergence theorem.

2.8. LEMMA

Let p be a measure in D. Let U be a finely open Borel subset of

D. Let (Ti) be a sequence of stopping times converging pointwise on Q
to a stopping time T. Suppose = 0 for all i. Then = 0.

Proof : First suppose U is of the form {v  c}

where V is open in D, v is superharmonic in D, and c is a real

number. Suppose that 0. Then there is an open set W which

is relatively compact in V and a real number d  c such that

uT(W  d}) ~ 0.

Let f be a [0,1]. -valued continuous function in D such

that f=l on W and f=0 outside some compact subset of V,. let g

be a [0,1] -valued continuous function on such that g=l on

and g=0 on ~c,~~ , and let ~(x) = f(x)g(v(x)) for xED.

Since ~ vanishes outside U we have i) = 0 for
1 - 1  ~J

al l 1. Thus if we let

A = D : 1 T, }) = 0 for all i}

then A is universally measurable and u(Ac) - 0.
Let x C A. Then for w the map t is

continuous on r0,~(c~)). From this it is clear that 
i i~~ ’~~j

on {T~~} . . This convergence also holds on since ~
vanishes outside a compact subset of D. If 0 then we

must have n > 3 (D is a Green region so if n  2 then is not
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polar and Px(~~) = 1) so Px-a.s.. Thus we find that

~(8 T~ .) +(BT) on Q in any case. Applying the

Lebesgue dominated convergence theorem we conclude that

)= O. As this is true for x ~ D we have

= 0. But ~ >_ d} 
so this implies that

d}) = 0, which is a contradiction. Thus we must have

uT(U) = 0 after all.

We remark that for the proof of theorem 2.2 it suffices to

have the lemma for U of the special form we have just considered.

Now suppose U is a general finely open Borel subset of D.

Then U = U U where (Ua)a ~ ~ is a family of finely open sets
" 

of the form considered in the first part of the proof. Next, there is

a countable set LO C z such that Z~U U is a polar

set. (See Blumenthal and Getoor [1, p. 203]). By the first part of
the proof we have 0 for all a. Now Z, T=0)

since Z is polar. 
. 

That is, = f Z Let

0) = 1 for E U is

finely open. For each i we have J 
U 

 S)

 U,  = 0.

Thus for p -a.a. x 6 U we have S) = 1. Hence

= 0. This completes the proof of the lemma.

2.9. DOMINATION PRINCIPLE

Let X be a measure in D such that GÀ is a potential. Let

v be a non-negative superharmonic function in D with Riesz measure

Then the following are equivalent :
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a) v > GÀ throughout D.

b) a.e. [À] and v(Z) > a(Z)

for all 1 Borel polar sets Z ~D.

c) v > G~ a.e. ~a~ and v(Z) > a(Z)
for all l Borel sets 

d) v > G~ a.e. ~a~ and v(Z) > 

for all Borel sets = ~} .

Proof : b) ~ c). Any subset of is a polar set.

c) ~ d). = 0.

d) ===~ a). v = Gv + h where h is a non-negative
harmonic function in D. Let P = and let a1,~2 be the measures

in D defined by = dx), = dx). Then

a2  v so v= vl + a2 for some (unique) measure vl in D. Let

vl=Gvl+h. Then Gal a.e. ~al~ . Also al does not charge polar

sets. Hence ~1 lives on Thus we have 

throughout D. This follows from the integral representation of balayage
due to Brelot (1~ .

a) ===~ b). The only thing to prove is that v dominates À

on polar sets. For this, see lemma 3.11 below. Me remark that we have
included the fact that a) ===~ b) only for completeness ; it is not

needed for understanding the rest of the paper.

Proof of theorem 2.2. : Let v be a countable open base for D

consisting of relatively compact subsets of D. Let G be the weakest

topology on D which is stronger than the usual topology on D and which

makes Gv continuous. Let u be the collection of sets of the form

V n {Gv  c} where V E v and c is a positive rational. Then tl is

a base for the topology G induces on {Gv  ~}. (This assertion is not
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used below ; indeed we do not explicitly use the topology G, but it gives
a perspective on the proof).

Now v is countable. Let (Ui)i > 1 be a sequence in U in which each

element of U occurs infinitely many times. Let S be the set of all stopping

times S such that For each i>1 let Let

To = 0 and for i > 1 let

+ if this stopping time is in 6’

T. _ 
" ~-1

otherwise.

(Note that = inf{t > Ti - 1 : Bt 

Then (T,) is an increasing sequence of stopping times in S. Let

T = lim Ti.
i -~ co 

~

Then by 2.7. Let 4Je claim x=v . We know Ga > Gv
so it suffices to prove Gv By 2.1, a charges polar sets less than u.

Hence  v(Z) for every Borel set Z Thus by 2.9 we have

only to show that Gv a.e. Suppose > 0. Then there

is a positive rational c such that >  c}) ~ 0. But

{G~ > c) is open in D (as Ga is lower semicontinuous) and hence is a
countable union of elements of v. Thus there exists V E v such that

Ga > c on V and 0, where U = V  c). Let I={i > 1 : 

Then I is infinite. Note that for any stopping times R and S, the strong
Markov property impl ies that (uR)S - Suppose i Then

R

GpT. ’1-1 > c > GB) on so by 2.6, G(u T. ~-1 )H. > Gv in D ; hence

Ti = Ti-1 + . Therefore by 2.5, uT.(U) - 0. But this is true for

arbitrarily large 1 (as I is infinite) so by 2.8, 0. That is,

x(U) = 0. This is a contradiction so we cannot have > Gv}) ~ 0. The
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theorem is proved.

2.10 EXAMPLE

Let u be the unit point mass at the origin in Rn . Let

(rj) be a sequence of distinct strictly positive real numbers and

for j = 1,2,.., let vj be the uniform unit distribution on 
{x~ Rn : | |x|| = rj} . ° Let sequence of 

real numbers such 03A3j~1 p j 
= 1 and let v = 

pj03BDj. we shal1

show that there is a stopping time T such that uT 
= v . (When

n > 3 , in which case ~n is a Green region, and E.~ p.~r.n - ~J-1 J J

this result does not follow from theorem 2.2. Thus theorem 2.2 is not

best possible. ) Our method of proof does not use potential theory at
all but instead relies on the following measure-theoretic result:

Lemma : Given a probability space (s~,A,P) , a decreasing
sequence of sub-Q-fields of A such that P is non-atomicJ _
on each Aj , and a sequence of non-negative reals such

that pj 
= 1 , there exist disjoint Aj~Aj with P(Aj) - pj .

This result is taken from Dudley and Gutmann [1]. We cannot
resist the temptation to sketch a proof which is much easier than

the one they give. If we have chosen disjoint with P(Ak) -J J J

p. for j = 1,...,k then we can choose any A with J k+1 k+1 k+1
- p k + 1 and we can modify Ak , k Ak k-1 ,..., Ak1 in turn to obtain

Ak+1 , ,..., such that Ak+1 , Ak+1 , ,..., are

disjoint and for j = 1,...,k , A. , = p. , and

k+1 k k+1 
J J J Jk 

-

Aj)  2P(Ak+1) = 2pk+1 . ° Then for is a

P-Cauchy sequence in Aj , which therefore converges in P-measure to

a set A°j~ A .. We have P(A°) - p . and for j2 , A° )
- 0 . Now let A . = A°.B U .JA° . J J 1 J2

Now here is how to use the lemma to construct the stopping
time T . Let F = Q ( ~ ~ Bs ~ ~ ] : 0  s  ~) and for 0  t  ~ let

Ft = Q(~~Bs~~ : 0  s  t) . For each j let Hj = inf it : ’ ~~Bt~~ - r.l
(which is an (Ft)-stopping time) and let Aj = FH ~." ~H . Now 

J

~ 1 
° ° ° 

j
Is and its is the unit
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distribution on so A. is P  - non - a tom i c .

Thus by the lemma there exist disjoint Aj E Aj such that P (Aj) - pj .
We may assume that Aj = 03A9 . Now define T on Q by T = H. on

A. (j = 1,2,...) . Since 
J 
. (~Aj) , T is an (Ft)-stopping

time. Evidently I = rj) = pj . Now it follows from the

spherical symmetry of Brownian motion that if R is any F-measurable

random time then is spherically symmetric. Thus p.. 
= v . .

We reiterate that, as one might have hoped in view of the

spherical symmetry of v, , the stopping time T we have constructed

is actually a stopping time with respect to the filtration of the

process which is of course smaller than the filtration of

(Bt) . Let us also point out that T has the property I
= . From this it follows that i f v is special

(see section 3) then T is p-standard (see 4.1). Hence this example
al so shows that in the case n = 2 , theorem 4.12 below is not best

possible (choose (rj) and (pj) so -pj log 

3. POTENTIAL THEORY IN (R1 AND R2

To state and prove the analogue of theorem 2.2 for the case

in which the Green region D is replaced by ~1 or ~2 we need to

develop some potential theory for ~1 and R2 and we also need to

discuss the notion of "standard" stopping times. The standard times

are those which are not too big in a certain sense. The detailed dis-

cussion of these stopping times will be taken up in the next section.

In this section we shall develop the required potential theory.

Suppose that n = 1 or 2 . Define t : by

- 2 1 H ( if n = 1 ’

03A6(x) =  - 2 1 ,r log||x|| if n = 2 and x ~ 0 , >~ m if n = 2 and x = 0 .
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If p i s a measure on ~n then define fRn -+ 
by

U~(x) = J dp(y)

and define Uu , the potential of p , on the set where U+ and Uu -
are not both infinite, by

If p is finite on compact sets and Uu is finite at at least one

point then we say p is s ecial. If p is special then p is fi-

nite, Uu is Lipschitz (in particular Uu is finite everywhere),
Uu is everywhere-defined and superharmonic, and p = in the

sense of generalized functions. It is easy to see that: if n = 1

then p is special iff p is finite and dp(x)  ~ ; if

n = 2 then .p is special iff p is finite and R2 log+||x|| d (x)  °o .

3.1. LEMMA

Let p be a non-zero measure on 1R and let ~ be the centre

of mass of p . Define. f : R -~ ~ by f(x) = U. . Then

f > 0 , f is increasing on (-°°,~j , f is decreasing on t~ ,~) ,
and f(x) -~ 0 as 

The proof of this lemma is a simple computation. The two
corollaries below follow immediately.

3.2. COROLLARY

Let p and v be special measures on R and let c be a

real number. Suppose U" + c > U. . Then:

a) 

b) if p(R) then c > 0 and p and v have the

same centre of mass.
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3.3. COROLLARY

Let p be the unit point mass at ~ E R and let v be a

special probability measure on R. Then Uv iff the centre

of mass of v is equal to ~.

3.4. DOMINATION PRINCIPLE FOR R :

Let p be a non-zero special measure on R and let v be a

superharmonic function on R such that :

a) v > U~‘ a.e. ru~

b) 1 im inf w(x) - u(R)~(x)~ ’ -~.
ao

Then v > U~ everywhere on R.

Proof : A function on R is superharmonic iff it is finite

and concave. Note that such a function is automatically continuous. Let

E = {v > Uu} and let Then W is open. Also u(W) - 0 so U~

is harmonic in W. Since we are in dimension one, this just amounts to

saying that on each component of l~ the graph of U~ is a straight
line. By the continuity of U~, this actually holds on the closure of
each component of W. Suppose pEW. We shall show that v(p) > 

(Whence W is actually empty). Let C be the component of M containing

p. Then C = (a,b) where a and

a  p  b. Also since  ~ 0, so at least one of a and b is finite.

Case 1 : :

a and b both finite. Then v(a) > and v(b) > 
Also v is concave and U~ is a straight-line function on Hence

v  U on [a,b]. In particular v(p) > 

Case 2 :

a = b 6E. By b) and 3.1 we have lim inf [v(x) - > -co.

x -~ -co

Hence is bounded below on Now for each xg there is

a unique number c(x) f ~0,1~ such that p =~1-c(x)~x+ c(x)b. As x -co,

c(x) -~ 1.
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Now

2L fl-c(x)] + [l-c(x)J U~(x) + c(x) 

= [l-c(x)] + U(p).

Letting x~-. we obtain .

Case 3 :

a~ E, b=co. Similar to case 2.

3.5. . COROLLARY

Let p and v be special measures on R and let c be a real number.
Then U +c  U on al l of Riff a.e. 

and either p ~ or c > 0.

Proof : Combine 3.1, , 3.2, , and 3.4. .

3.6. . LEMMA .

Let p be a special measure on R . Then :
a) lim [U ~(x) - (R2) $-(x)] =0.

b) lim inf [U (x) - (R2) $(x)] ~ 0.
||x|| ~ ~

c) If p has compact support,

lim [U (x) - (R2) 03A6(x)] = 0. .

Proof :

a). = ~(x) dp(y). .
Now if 1 and [ ~_ 1 then

~(x-y) - ~’(y) = ~ 
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Thus for each ~’(x-y) - ~’(x) -~0 as 

 - since p is special. Hence the desired result

follows from the Lebesgue dominated convergence theorem in view of the

following estimate.

Claim : : K(x-y) - (log2 + log+||y||).

First note that for all r ~_ 0, log 2 + (Consider
the two cases 0 ~ r ~ 1 and r ~ 1). Now for the proof of the claim

consider the four cases 1,

||x-y|| ~ 1, and ||x|| ~ 1.

b). This is evident.

c). As p has compact support, so does U~.
3.7. LEMMA 

Let p be a special measure on R . For each positive real number r

let D be the open disc of radius r centred at 0 in R and let

p~p*. be the measures on R ? defined by dx),

= dx). Then :

a) For all x 6R and all r > 0,

U ’r(x) ~ U ’r(0) - 1 203C0 (Dcr) log(1 + ).

b) For all e > 0 and all k ~0 there exists r 6(0,co) such

that for r l r  co we have U~ + e ~ U on 

Proof :

a). This follows from the estimate

which holds for x ~R2 and y 

b). Choose such that

)1og(l+k) + Dcro log||y|| d (y) ~ 203C0~
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Then for any we have on Dkr, by a). The lemma is
proved.

3.8. LEMMA

Let A be a Borel non-polar subset of R2. Then there is a
non-zero special measure x on R2 such that a(Ac) = 0 and U~
is bounded above on R2.

Proof : : There is some open ball D i n R2 such that 

is not polar. By the capacitability theorem, DnA contains a compact
set K which is not polar. Let u be the capacitary potential of K

relative to D and let a ~ -Au be the Riesz measure of u. Extend X

to a measure on R by setting ~(D Then a~ 0 as K

is not polar. Now there is a harmonic function h in D such that

U~ - u+h in D. We have u  1 in D, h continuous in D, U~
continuous in Kc, and (by 3.6) ~U~(x) -~ -co as ~~x~~ -~ ~ . Hence

U is bounded above.

3.9. DOMINATION PRINCIPLE FOR Rz
Let p and v be special measures on R2.
Let c be a real number. Then Uu on R2 iff the

following four conditions hold :

a) a.e. ~u~
b) v(Z) > u(Z) for every Borel polar set Z ~RZ.
c) 

d) or c > 0.

(We remark that just as in 2.9, b) can be replaced by either
of the two weaker conditions :

bl) v(Z) > u(Z) for every Borel set Z 

b2) v(Z) > u(Z) for every Borel set Z 
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Proof : Let us remark that for the purpose of embedding in

Brownian motion in R2 we need only the implication ( .~) of this

theorem. We state the theorem in "if and only if" form for completeness.
As to the proof of (===~ ), it is obvious that a) and d) follow from the

assumption that Uu everywhere. The reader who wishes to see

that b) and c) also follow is referred to lemmas 3.10 and 3.11 below.

These lemmas are not needed for understanding the rest of the paper.

Now let us prove (4=). We proceed by reducing to the case of

a Green region. Clearly we need only consider the case in which 

Then from b) and c) we can conclude that there is no polar set which

carries p . Hence p must charge the set {Up  ~}.

But then A is not a polar set since p does not charge polar subsets

of Choose e > 0. Then by 3.8there is a non-zero special measure A

on R2 such that U~  ~ on R2 = 0. We may suppose x

has compact support. For each r > 0 let ur and Dr be as in the

statement of lemma 3.7. By b) of that lemma, there exists r E (0,~)
P

such that Uu + E > U r on Dr for all r > r . Choose a E (0,1J.
Then = a U~  2 E on R2. Thus for all r in ~r 0 ,~) we have

Uu + e > U on where ur a ’ ur + aÀ. As 0, there exists

r 1 E such that > Then for all r E 

we have lim inf [v(x) - p (R2) = +°o , where v=Uv+c.
r ,a 

,

We may suppose r1 is chosen so that 
" I

Choose and . Then there exists r3 E 
such that on D we have v > Y (RZ ) ~ and +E > UY where

the second estimate follows from 3.6 (c) because y has compact support.
Now choose r4 ~ [r3,~) and consider the Green region Since

the support of y is a compact subset of D, UY is finite and continuous
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on aD. Let h be the unique continuous function on 1J which is

harmonic in D and which agrees with UY on 3D. Then UY-h = Gy
in D where G is the Green function of D. Now v+e-h is lower

semi continuous on ?, superharmonic in D, and non-negative on 3D.

Hence v+e-h i s non-negati ve i n D by the minimum principle. Next

observe that on {v ~ U~} n D, U~ +e -h ~ Gy
in D, y lives on {v ~ D, and y charges polar sets no more

that p does and so certai nly no more than v does. Thus Gy

throughout D by the domination principle for a Green region (see 2.9).
That i s, v+£ > UY i n Dr4. As was arbi trary,

v+E > U ur2 on all of R . 4 2 Now this holds for all r2 E 
Letting r 2 -~ ~ we obtain v+e , which holds for all 

Now letting a -~ 0 we get v+E > Uu. Thi s hol ds for al l E > 0. Hence

v > The theorem i s proved.

3.10 LEMMA

Let p and v be speci al 1 measures on R2 and let c be a real

number. Suppose U"+ c > Then : :

a) u~2).
b) If v(R2) = then c  O.

Proof : Let y be the uniform unit distribution on

{x ER2 : : ~~x~) - 1). Then UY= -~ .

Let a = p*y , , s = v*y. Then 

= (Uu +c) * y ~ UV*y = - U~ . .

The proof may be concl uded by applying 3.6 (a).

3.11. LEMMA

Let D be an open subset of Rn and let u and v be superharmonic
functions in D with Riesz measures p = -Au and v =-Av respectively.
Suppose v > u. for every Borel polar set Z C D.
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Proof : It suffices to consider Z’s which are relatively

compact in D. Then Z where D’ is open and relatively compact

i n D and W i s open and rel ati vely compact i n D’. Then u and v

are bounded below in D’, say by c, and if we let 

and D’,W) then u’ and v’ are potentials in D’

whose Ri esz measures agree in W with p and v respectively. Thus we

see that we may suppose that D is a Green region and that u = Gu

and v = Gv, where G i s the Green functi on of D. Then since

Gv > Gp, there i s a randomi zed stoppi ng time T such that p = v,~ , ,

by Rost fl]. But then u(Z) _ Z IIPZ(T=O)II dv(z) since Z is. polar,

so u(Z)  v(Z).

We remark that i t i s al so possi bl e to gi ve a proof of this

lemma which uses only classical potential theory.

We concl ude thi s secti on wi th a convergence theorem. First

we need a definition.

3.12. DEFINITION .

A measure Y on Rn will be called good i ff y has compact support
and UY i s conti nuous and finite.

Observe that is a bounded compactly supported Borel function

on Rn and y(dx) = ~(x)dx then y is good. Hence if u and v are

superharmonic functions on Rn such that Judy ~_ vdY for all good

measures Y on Rn then u > v everywhere on Rn. If n=1 the

point masses are good measures, but not if n=2.

3.13. THEOREM

Let p be a measure on Rn (where n=1 or 2) which is finite
on compact sets and let be a net of special measures on R"

such that 03C6d i ~ 03C6 dp for all compactly supported continuous functions

O on R". Then : :

a) 
. 

U +d03B3 forall goodmeasures Y on Rn

Now suppose also that the net dv) converges to a finite
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limit for some non-zero special measure v on Rn. Then :

special.
u.

c) The net (U_ ) converges uniformly on compact sets to Uu + C,
where C is some finite non-negative constant.

d) 
. 

dy -~ Uu - C dy for all good measures Y on Rn.

Proof : For any good measure y , U+ is compactly supported
and continuous. Part a) follows immediately from this, upon interchanging
orders of integration. Now suppose v is an in the statement of the

theorem. Then for some io, sup U~ dp.  ~. Hence

lim [ sup ( ~ r})] = 0.

Also, as vaguely, for each compact set K ~ Rn
there exists i~ such that sup  ~. Combining these two

observations we find that sup  ~ for some i > i ,  ~ ,

and f dUi ~ fd  for all bounded continuous functions f on Rn.

Next, it is easy to show that :

(*) U - ~ lim inf U i-.
Thus by Fatou’s lemma, Uu U i dv. Hence Uu dv  ~ .

Therefore, as v ~ 0, U~ is not identically infinite. Hence Uu
is finite everywhere and p is special. Also, for any x E Rn the function

y ~ U03BD-(y) - 03BD(Rn)03A6-(x-y) is bounded and continuous. It follows that the

net (U i-(x)) converges to a finite limit u_(x) for each x in Rn.

But JU~(x) - I so {U-~ : i > i 1 } is equicontinuous.

Hence u~ is continuous and U-~ -~ u- uniformly on compact sets. Now
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for any the function y ~ ~ (x-y) - ~-(y) is bounded and .

continuous so [U~(x) - U-’ (x)] - (Uu (o) - U-’ (0) J

~-(Y) dpi(y)

- ~ 0.

Thus u_ = U~ + C where C is some constant. As U  u_, C

is non-negative.

Remark : The constant C need not be zero. For instance

on Rl.let p. be the point mass at 2i of total mass lli for

i=1,2,3,.... Then (Pi) converges vaguely to 0 but -l.In this

case, C=I. The next result gives a useful condition under which C will

be 0.

3.14. COROLLARY

Let p be a measure on Rn (where n=l or 2) which is finite

on compact sets and let a net of special measures on Rn
such that + for all compactly supported continuous functions

~ on Rn. Suppose there is a special measure a on Rn such that

Uu’ and = for all i. Then p is special, (U~)
, converges uniformly on compact sets to Uu, and U U  dy for all

good measures Y on Rn.

Proof : It suffices to show that every subnet of (p.)
has a further subnet for which the conclusions of the corollary hold.
But if n=2 then U-’ - - U ~ ~ a  -Ua ~ a = U~, where a is the

uniform unit distribution on Rn 1}. Thus whatever n is,
the net (U-~(o)) is bounded. Thus we may reduce to the case in which

this net converges to a finite limit. But then by the theorem, with
v = the unit point mass at .0, p is special and there is a constant
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C 6 such that U_ -)- U_ + C uniformly on compact sets and

dy ~ U  dy for all good measures Y on Rn. Then Uu + C  U -.

Also u(R2) = Now apply 3.6 (a), if n=2, or 3.2, if n=1, to

see that C must be zero.

4. THE CASE OF BROWNIAN MOTION IN R1 OR R2

In this section, if p is a measure on Rn and T is a stopping
time then p.. will denote the measure on Rn defined by = 

If n > 3, we may think of p~. as being obtained from p by letting 11

"spread out" under Brownian motion up to time T. The measure p~. is

more spread out than p in the sense that its electrostatic potential
is lower. As soon as n  2 this need no longer be true. For example
let be

the uniform unit distribution on E, and let T = inf{t > 0 : Bt E F}.
If n > 3 then > 0 and the mass of p.p is sufficiently
smaller than that of p so that the potential of p~. i s  that
of p . If n=1 or 2 though, then any non-polar set is hit in finite
time with probability one and so uT is the uniform unit distribution on F,

whence  U on )jx)j  2}.

Here is another example, due to Doob. Let n=1. Let p and v

be two arbitrary probability measures on R. Let p = law(B1 ; 
Then p is p convolved with a Gaussian, so p has no atoms. Hence

there is a Borel function f : R -~ R such that v = law(f ;p). Let
T = inf{t ~. 1 : Bt = Then T is a stopping time and, since
the paths of (Bt) are continuous and unbounded above and below

P~- a.s., BT = pP-a.s.. In particular 1aw(BT ; Pp) = 

Thus in the one dimensional case the possibilities for PT are unrestricted

if no restriction is placed on T : 1
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If, however, we restrict our attention to small enough stop-

ping times then examples of the sort described above do not occur.

Traditionally the stopping times considered small enough have been

those with finite expectation; see Skorohod [l], Dubins Root (1~ ,
and Baxter and Chacon [1]. This is too stringent a restriction though

since it implies that p-r has a finite variance if p does. What we

want is a theorem analagous to 2.2, which would say that if p and

v are special measures with Uv and u and v well-related

on polar sets then v = p.r for some "small enough" stopping time T .

For us, the stopping times which are small enough are the ones we

call 1 standard following Chacon [1].

4.1. DEFINITION

Let p be a special measure on ~n , where n = 1 or 2 .

Let T be a stopping time. We shall say T is u-standard iff when-

ever R and S are stopping times with R  S  T then uR and uS

are special and ~ .

Remarks : From 3.2 (if n = 1) or 3.10 (if n = 2) we see that if T

is p-standard then P (T = .) = 0 . Also note that if T is p-

standard then any stopping time smaller than T is also p-standard.

4.2. LEMMA

Let p be a special measure on where n = 1 or 2 ,

and let T be a bounded stopping time. Then T is p-standard and

E [ T0 f ( B t ) dt ] = ’’ f [ U (x) - U T(x)] f (x) dx

for any non-negative Borel function f on Rn .

(Remark : We are working with Brownian motion normalized so that

= 2nt ).
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Proof : First let f be a non-negative compactly supported
C function on Rn and let u=UY, where Y(dx) = f(x)dx. Then u is

C and u and its partials up to order 2 don’t grow too fast at infinity
so by Dynkin’s formula the process

(0  t ~)

is t a martingale over for every x ~ Rn. Now Au=-f so

is bounded. Also as p is special. Thus

(Mt) i s a marti ngal e over Also the sampl e paths of (Mt)
are continuous. Thus for any bounded stopping time R, MR is

P -integrable and = 

Thus |u| duR =  ~ (so uR is special - if

we take f(x)dx = 1 then u + $* is bounded) and

f(Bs)ds] = E (u(BR))

= ju ju duR
= u(x) - UuR(x) f(x)dx.
Now by a monotone cl ass argument one can show that this

equality holds if f is any non-negative Borel function.

From this we see that if R and S are stopping times
with R  S  T then uR and uS are special and for any non-negative
Borel function f on Rn,

f(x)dx = > 0 , .

hence U Thus T is p-standard.
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4.3. LEMMA

Let M be a family of special measures on Rn, where n=l or 2.

Suppose  °o and {x E Rn : inf Uu(x) > - ~} is not polar.
uFM

Then 1 im 

Proof : Suppose not. Then there is a countable set

such that 1im sup E Rn : « > 0. Let
.

Ak = inf -k}, for positive integers k. Then each

~N

Ak is Borel and for some ko, Ak is not polar. But then by 3.8, there

is a non-zero special measure À on 0 Rn such that U is bounded above

and = 0. Then for each u C N, U03BBd  = U  d03BB ~ - ko03BB(Ako).

Thus sup kx(A ) + du  m

Now we may suppose À has compact support. Then

(U~‘) (x); +~ as ] -~ ~ so we conclude that

1im after all.
~N

4.4. . LEMMA

Let p be a finite measure on Rn.
Let T be a collection of stopping times such that if T E T and

S is a stopping time satisfying S  T then SGT. Suppose

l;m sup lim sup Pu(T > t) = 0. °

Proof : For i=1,2,... let 

Then = 0. If T 6 T then T A Ri E T and
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. Thus lim sup P~(T ~R.) = 0. Now fix e > 0. Then for some i,
i+°° T~T 1

sup P~(T ~ Ri )  2. Next for some t)  2. ThenTET 
’ ~ ~" ""

for all T GT.

4.5. PROPOSITION

Let p be a special measure on Rn, where n=1 or 2. Let r

be a set of good measures on Rn such that whenever a and s are

good measures on Rn such that U°‘ dy ~ dY for all Y E r,

then U° ~ US. Suppose is a sequence of p-standard stopping
times converging pointwise on st to a stopping time T. Consider the

following statements :

a) There is a special measure a on Rn such that aQRn) = 

and U ’’ > U for all i.

b) u T is special and for all 

c) T is p-standard.

Then a) =9 b) ~ c).

Proof : a) ~ b). Let H be the set of stopping times H

such that for some i. Then for all H 6H, uH is special and

U > U°, since each T, is u-standard. Therefore

lim 
00 

sup 
H 

( > r}) = 0, by 4.3. Hence
H~H

lim sup P (Ti ~ t) = 0, by 4.4. Therefore T is P -a.s. finite so for

each bounded continuous function, on Rn, since (Bt>
is continuous on The statement b) now follows from 3.14.
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b) ~ c). . If Q is any bounded stopping time then U 
Q

for all i, , so by the argument of a) ~ b) we f ind that

Q 
dy ~ fu U T^ Q dy for al l Y E r. Now for each i . ,

. 

as Ti is p-standard. Since U Ti 
. 

dY + dY

for all y E r, it follows that U T^Q d03B3 ~ U T dY for all 03B3 E r, ,

whence In particular, if R and S are stopping times

satisfying R _  S then 

UuT so whence = 0) . If i n addi ti on 

then Letting t and applying 3.14 we obtain

U R > U S. Thus T is -standard.

4.6. . COROLLARY 
’

Let 11 be a special measure on Rn, where n=l or 2, and let T be

a stopping time. Then T is p-standard iff p~. is special and

4.7. . COROLLARY

Let 11 be a special measure on Rn, where n=l or 2, and let T be

a stopping time. Let m denote Lebesgue measure on Rn. Then : :

a ) ) For any f i ni te measure v on Rn, , U" i s defined a . e. . ~ml
and i ts m-i ntegral over any compact subset of Rn makes sense,

though i t may be +m.

b) T is p-standard iff for each compact subset KRn,
U~ - dm is finite and equal to 

Proof :

a) is trivial

b) Combine 3.14, 4.2, and 4.6.
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Remark : In order that T be p-standard it is not enough

that be finite for each compact set An example

showing this is furnished by taking  to be the uniform unit distribution
on =2} and T to be 

4.8. COROLLARY

Let p be a special measure on R*B where n=l or 2. Let R

be a p-standard stopping time and let S be a R-standard stopping
time. Then is a p-standard stopping time.

Proof : Apply 4.7 in conjunction with the strong Markov

property.

4.9. PROPOSITION :

Let p be a special measure on R*B where n=l or 2, and let

T be a stopping time. Then the following are equivalent :

a) T is p-standard

b) T is P~-a.s. finite, E~’(B~.))  00 , and whenever S is

a stopping time satisfying S ~T then

c) The collection of random variables of the form $*(B~), where S

is a stopping time satisfying S ~T and = 0, is

P -uniformly integrate.

d) : 0 ~ t  co) is P -uniformly integrate.

(Remark : We remind the reader that if n=l,

while if 

Proof : : a) o b). E~($’(B~)) = 

= -(U~ ~a)(0) ~-(U~*a)(0) = 
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where a is the unit point mass at 0 if n=l or the uniform unit

distribution on {x f: Rn : 1} if n=2. Therefore 

and if A G BS then Eu(~ (BS,)) ‘ where S’ is the stopping
time SlA + T 1 A c. It follows that for all

whence ~-(BS)  

b) ---~ c) ===~ d). Clear.

d) Let S be the set of bounded stopping times S such that

S ~ T. If S E S then there exists t ~ such that S ~ T A t ;

since t is u-standard. It follows

that {03A6-(BS) : S is P -uniformly integrable. But then

lim 
co 

lim 
co 

sup = 0,

by 4.4. It follows that = 0. Hence as t ; oo,

for every bounded continuous function ~ on Rn. Also lim 
’~"

exists, is finite, and is equal to Eu(~ (BT)) ; that is,
U ’(0) = lim  ~ , . Thus by 3.13, p.. is special and

m 

_ () T

dy -~ dY for every good measure y on Rn. Hence by 4.5,

T is p-standard.

4.10. COROLLARY .

Let p be a special measure on Rn, where n=l or 2. Let

A be a bounded Borel subset of Rn and let T = inf{t > 0 : Bt ~ A}.
Then T is p-standard.

Proof : Let d be the diameter of A. Then

is not only P"-uniformly integrable, but is actually bounded by a fixed
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P -integrable function. Hence T is p-standard by d) ~ a) of the

proposition.

4.11. COROLLARY

Let p be a special measure on R and let T be a stopping
time. Then T is p-standard iff = 0 and whenever S is a

stopping time satisfying S  T then  ~ and = 

Proof : ’ (===~ ) is a martingale over 

and by a) ~ d) of the proposition, it is uniformly integrable.

(~ ) Let S be a stopping time IT, let A 

and consider the stopping time S’ = S 1A + T 1 . Then

= Eu(Bo) = Eu(BT). Hence EP(Bs 1A) = 1A). It follows

that BS = so IBS). Thus T is -standard

by b) ~ a) of the proposition.

Remark : In Monroe [1] it is shown, for the case when p

is the unit point mass at 0 in R, that if T is a stopping time then

Pu-uniformly integrable iff = 0,  ~ ’

= 0, and T is minimal in the sense that if S is a stopping

time such that S  T and I Pp) = law(BT ; Pu) then S=T

Monroe’s proof of the forward implication here is not difficult

and is based on the fact that the paths of Brownian motion are a.s.

without intervals of constancy. (Another way of proving this implication
is to use the fact that for

any non-negative Borel function f on R ; see 4.7). Monroe’s proof of the
reverse implication is not simple. Recently Chacon and Ghoussoub [1] have
found an elegant and easy proof of this implication. The analogous result

for the case of R remains an open question on account of difficulties

with polar sets. (For the three dimensional case, or more generally for
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case of a Green region, there is nothing to prove since all stopping times

in this case are "standard" and minimal ; see 2.1 (a)).

4.12. THEOREM

Let p and v be special measures on Rn, where n=1 or 2.

Suppose :
a) Uv.

b) u(Z)  v(Z) for every Borel set Z 

c) u~n) _ 

Then there is a p-standard stopping time T such that PT =v.

(Remark : It then follows that actually v(Z) = {U~=.})
for every Borel polar set 

Proof : As the proof of this theorem is very similar to

the proof of theorem 2.2, we shall limit ourselves to a few comments.

First, the only real difference is that here we must check that we are

working with standard stopping times. This is easy, given the results

about standard stopping times which we have already developed in this

section.

Second, we need the analogues of the preliminary results

of section 2, for the case where the Green region D is replaced by R1
or R2. Most of these are easy to establish. We remark only that the
required analogue of the convergence lemma 2.7 is 3.14 and the required
analogue of the domination principle 2.9 is 3.4 (if n=1) or 3.9 (if n=2).

Remarks : .

a). If p does not charge polar sets then the condition b)
of the theorem is vacuous. In this case, v is of the form y where T

is a p-standard stopping time iff U~ ~U~ and u(R ) = v(R ).

b). If n=1 and p is the unit point mass at 0 then v

is special iff dv(x)  m , and if v is special and = 1
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then U~ iff j x = 0 , by 3.3. In this case the measures

of the form where T is a p-standard stopping time, are pre-

cisely the probability measures on R whose centre of mass is defined
and equal to 0 .

c) It follows from 4.7(b), together with lemma 5 of Baxter
and Chacon [l], that i f u is a special measure on ~n and T is a

p-standard stopping time then 
’

J’ x2 = x2 + 

in particular; if p.. has a finite second moment then T has finite

P~-expectation (and p has a finite second moment too).
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