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Domains of attraction in Banach spaces

Evarist 

Instituto Venezolano de Investigaciones Cientificas

and Universitat Autonoma d~ Barcelona

1. Introduction. In what Banach spaces can we obtain results on domains

of attraction to stable measures that resemble those in the line or in

Rn? This seems to be the first question upon which to start the theory

of domains of attraction in Banach spaces. It is indeed a natural ques-

tion given that Hoffmann-Jorgensen and Pisier [12] and Jain [13], Aldous

[5] and Chobanian and Tarieladze [9] solved very neatly the same ques-

tion for the domain of normal attraction to any Gaussian law. The pro-

blem has been recently studied by Araujo and Gine [7], Mandrekar and

Zinn [4], Marcus and Woyczynski [l7], [l8], and Woyczynski [33]. In

this note I will try to give a unified account of this theory (showing

that apparently different formulations are aquivalent); for the sake

of completeness there will be a non void intersection with some of the

mentioned papers, but several proofs as well as some examples are new.

The present state of the theory of domains of attraction to non-

Gaussian laws in Banach spaces, except for some preliminary results in

C(S), is roughly as follows: 1) the "natural or classical" conditions

for X to be in the domain of attraction of a stable law of order aE(0,2)

are necessary in general; 2) they are sufficient in type p-Rademacher

spaces for p>a (thus in type a-stable spaces by a theorem of Maurey and

Pisier [19]); 3) if they are sufficient in B then B is of type a-stable;

4) several sets of "natural" conditions used by different authors are

equivalent; and 5) examples. I have chosen to base the proof of 1) and

2) on the general limit theorems in de Acosta, Araujo and Gine ~4~ (which

contain other interesting less general theorems ~16~, [23], and are not

too difficult to prove) and the proofs of 3) and 5) on some very nice

work on series by Marcus and Woyczynski ~17~. The proofs of 4) are es-

sentially standard. Part of the work in [17] about series is general-

ized to the case of not necessarily normal attraction, thus providing

new examples.

The theory on domains of normal attraction is presented separately

(*) Part of this work has been done while the author was visiting at

the Universite Louis Pasteur, Strasbourg.
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and before the general case because it is somewhat neater, does not re-

quire slowly varying functions and may be more appropriate to teach in

a course, eventually. Moreover, the general case, aside from the use

of slowly varying functions, is very similar to the normal, both in re-

sults and techniques. The general domain. of attraction to Gaussian

laws is not treated; for a result in this direction the reader is refer

red to ~7~. We will also give some preliminary results in C(S).

The notation is as follows. B will be a separable Banach space and

B its a-algebra; a measure on B will always mean a Borel measure. The

notation XEDNA(p) (or DNA(Y)) (domain of normal attraction of p (or Y))
where X is a B-valued rv, p a stable p.m. (Y a stable rv) of order a on

B,will mean that if X. are independent copies of X, then there exist

b n 6B such that 
n 

)-~ w *p(L(Y)). We will write XEDA(p)

(DA(Y)) (X is in the domain of attraction of p (of Y)) if there exist

and b n EB such that the above limit holds with a n instead of .

If {an} is known, we write } (p) . We will denote 
n

and a will usually be a finite measure on SB, and u=u(a,a) will denote
the measure on B defined by u{0}=0, du(r,s)=d6(s)dr/rl+a’ for all sES

and r>0. d(x,F) will denote the distance from xEB to the set 

will be the boundary of and |C will be the restriction to C of

the measure p. If X is a B-valued rv, then X=XI{~X~03B4}, and if

Sn=03A3jXnj, then Sn,03B4=03A3jXnj03B4.

If 11 is a o-finite measure on B with u{0}=0 and such that there
exist p n tp, p n finite, for which the sequence {exp(p 

n 
-!p 

n 
!6 0 )} is shift

tight, then we say that p is a Levy measure; in this case we denote by

c Poisp (or cPoisu if T is not relevant,or Poisp if p is symmetric)
the centered Poisson p.m. with Levy measure u, i.e. the measure

c03C4Pois =w*-limn03B4cn*exp( n-| n|03B40) where cn=-~x~03C4dx n(x); this limit

exists for every T>0. See e.g. [4]. In this connection it is interest-

ing to recall the following theorem ([2], [6], [7], [l4], [20], [2l],
[22]).

1.1 Theorem. 1) If p is stable of order a in B,ae(0,2), then there

exists a finite measure a on SB and xEB such that

(1.1) p = 03B4x*cPois (03B1,03C3),
2) B is of type a-stable if and only if every finite measure a on SB
defines a Levy measure p(a,o), and therefore a stable p.m. by equation
(1.1).

A triangular system of rv’s {X :j=l,...,k , nEN} is an infinitesi-
nj n 20142014201420142014201420142014201420142014
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mal array if for each n, the X . are independent, and if
- 2014201420142014~ ’ 

nj

maxjP{~Xnj~>~}~0 for every e>0. The result in which we will need

is as follows:

1.2. Theorem. Let B be a separable Banach space, Xnj a triangular

array of B-valued rv’s and S =03A3.X. Then )} is shift convergent
n j nj n

if and only if

(1) there exists a o-finite measure p on B, u{0}=0, such that

for every 8>0 with 

(2) lim03B4~0 {lim sup} 03A3jEf2(Xnj03B4-EXnj03B4)=03C8(f,f)~ for every 

(3) there-exists (for all) a sequence of finite dimensional subspaces

of B, such that limmlim sup .-ES .,F m )=0 for

some (all) p>0.

In this case, $ defines the covariance of a centered Gaussian p.m. y,

p is a Levy measure and for every 6>0 such

that u(aBS)=0. If B is of type p-Rademacher, condition (3) as a suf-

ficient condition for shift convergence of {L(Sn)} can be replaced by

(3)’ limm lim supn03A3jEdp(Xnj03B4-EXnj03B4 ,Fm)=0
((3)’ is also necessary in some cotype p spaces).

For the definition and useful theorems on slowly and regularly vary-

ing functions, the reader is referred to Feller Ch. VIII, Sections

8 and 9.

2. Domains of normal attraction. The theorem in the line is as follows:

if p is a stable measure on R of order with associated Levy mea
sure = (c1,c2,03B1) defined as 

c1dx/x1+03B1 for x>0

d (x) = for x0, { 0}=0,
c2dx/|x|1+03B1

then a random variable 03BE belongs to the domain of normal attraction of

p if and only if

1 
/a

(2.1)

as Condition (2.1) is obviously equivalent to

(2.2) 

for every 6>0. One of the several ways to prove this theorem is the

following: by the general CLT in R, (2.2) is necessary for 
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and (2.2) together with the condition

(2.3) 0

is sufficient; but (2.3) is contained in (2.2) as the following simple

computation shows: if we have

n1-2/03B1 udud03BD(x)
(2.4) 

=2n u 1-a du

=2c(2-a) 1~2-a~C uniformly in n, as 6-~-0,

where c=sup by (2.2). This is certainly a well known

compute; it is written down here only because some analogous computa-

tions will appear along this exposition. 

Condition (2.2), with Euclidean norm instead of absolute value, is

also necessary and sufficient in Rn, and the same proof does it, however

(2.2) cannot be expressed is such a nice way as (2.1). We thus have two

main questions: (i) in what Banach spaces B is the condition

(2.2)’ for all 6>0,

necessary and in what sufficient for a B-valued rv X to belong to the

domain of normal attraction of a stable p.m.p with Levy measure u? And

(ii) : is it possible to replace (2.2)’ by simpler equivalent conditions?

Question (i) can be completely answered, and this is the subject of

the main result in this section. Question (ii) is easier, but it is impos-
sible to get conditions as simple as in R (even if These are

the equivalences;

2.1. Proposition. If B is a separable Banach space, X a B-valued rv, o

a finite Borel measure on SB, and then the following are equivalent:

(1) X satisfies condition (2.2)’,

(2) for each Borel set such that o(3W)=0, and r>0,

(3) X satisfies

(3i) 03C0(X)~DNA(cPois( o03C0- 1)) for every continuous linear 7r with

finite dimensional range.

(3ii) there exists (for all) a family {Fm} of finite dimensional

subspaces of B such that F1={0}, Fm~, ~Fm=B and

limmlim (where it is understood that all

these lim supn are finite).
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If moreover X and a are symmetric, then (1)-(3) are equivalent to:

(4) X satisfies (3i) for and (3ii).

Remark. It is easy to check that is the Levy measure of a stable

p.m. of order a in Tr(B), and that if p itself is the Levy measure of a

stable p.m. P on B, then cPois( o03C0- ) is a shift of 03C1- 1. It is also

easy to check that there is no loss of generality in assuming
instead of the limit in (3ii).

Proof. (1)=>(2) because the sets of the form {xIII x IfEW, are a

convergence determining class in for every 6>0 (see 
Theorem 1.3.1).

(1) =>(3). The particular form of p implies that

(a) p(tC)=t for every C~B (change of variables), and

(b) {x:03C0(x)=t}=0 and {x:d(x,F)=t}=0 for every linear and cont-

inuous 03C0 and closed subspace F (by Fubini). Therefore, (2.2’) implies:

(2.5) n(X/n1/03B1)03C0-1|{y~(B):~y~>03B4}~w* 03C0-1|{~y~>}nP{d(X,F)>tn 1/03B1}~t-03B1 {d(X,F)>1}.
This already gives (3i) by the finite dimensional theorem on domains

of normal attraction. To prove (3ii) just note that {x:d(x,Fm)>1}~0

(as (Bc1)~). This and (2.5) imply (3).

(3) =>(1). Condition (3ii) ensures that the family of finite measures

is flatly concentrated for every ~~0 (see for the

definition) and condition (3i) that the one dimensional marginals are

tight (just apply (2.1) to X°f’B fEB’). Hence, by Theorem 2.3

{n(Xn1/03B1)|Bc03B4} is tight for each 6>0. Let va be a limit of this se-

quence for some by a diagonal argument we can construct v such that

and a subsequence {nk} such 
for every T6. By (3i) and the finite dimensional CLT, p and 03BD coincide

on all cylinder sets at a positive distance from zero; since these sets

form a semi-ring which generates the o-ring of all Borel sets not con-

taining zero, we conclude that (note ~{0}=B){0}=0). This proves (2.2)’.

(3)=>(4) in case of symmetry. If (3i) holds for then by sym-

metry and the Cramer-Wold theorem,it also holds for every continuous

linear 03C0 with finite dimensional range. Fj
Remark. In general, conditions (2), (3) or (4) are hard to verify. How

ever (3), and particularly (4), are adequate in some particular situa-

tions, notably if X=03A303B8ixi, 03B8i real rv’s and xi~B, as in this case there

is a natural choice for Fm. This is always the case in spaces with a

Schauder basis.
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Part of the proof of the main theorem is based on some interesting

properties of series of the form 03A303B8ixi where the 03B8i are truncations of

stable variables. These results, collected in the next lemma, are due

to Marcus and Woyczynski [l6]. The proof of 2.2(i) departs slightly from [l6].
2.2. Proposition. Let {xi} CB be such that {~i} independent symmetric
stable rv’s of order a with Levy measure u{0}=0 (i.e. with

ch.f.’s e - cltla for some constant c), let ~’.’=~.I 1 {~~il>ci} with c.>0 such that
03A3P{|03C6i|>ci}~, and 03C1i=03C6"iI{|03C6"i|di} for some sequence 

Then, 
(i) limt~~t03B1P{~03A3~i=1 03C6"ixi~>t}=2~xi~ 03B1/03B1,

and

(ii) >t}=0.

Proof. We first prove (i). By the Borel-Cantelli lemma, the series 03A303C6"ixi conver-

ges. Define

F(t) = P{~03C6"ixi~>t}.

We will show first that there exists c>0 and to>0 such that for t>to,
(2.6) 

If G(t)=P{supi~03C6"ixi~>t}, then a result of Hof fmann-Jorgensen [11] as-

serts that

F(3t)G(t) + 4F2(t).
The properties of the tails (e.g.(2.1)) imply that given e>0

there exists tl such that for t>tl,

If from some t on, then there exist ~,y>0 such that

from some other t on, and (2.6) is satisfied. So we may

assume that there exists a sequence t too such that °

This, together with the last two inequalities yields:

Hence, from some tk on we will have
o

and by recurrence

Now (2.6) follows by interpolation.
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We will obtain (i) from (2.6) and the following obvious inequalities

(used by Feller [lO],p.278,and also in [_2],[6] and [l6]): if X ,X 2 are
independent, and !))*!)) is a seminorm, then

(2.7) 

for every t>0 and 0el. Repeated application of the first inequality

together with (2.1) gives that for each n6N and e~(0,l).

lim 

~2(l+E)’~x~r/a+2(l+e)’~)!x~!"~ +...
+2(l+e)-~-~~x~_~/.+(l+e)’~liminf~P{~~~>t}.

Letting e~O we get that for each n,

(2.8) lim 

The second inequality gives that for every n~N and eG(0,1)

lim 

°

Since e is arbitrary application of (2.6) gives

(2.9) lim 

But since n is arbitrary in (2.8) and (2.9), the limit (i) follows at

once.

Finally we prove (it) . Note that exists also by Borel-

Cantelli. Each 03C1i being bounded, for each n6N there exists Mn such
that f~03A3n-1i=103C1ixi~M1n.
Hence

P{~03A3~i=103C1ixi~ >t}P{~ 03A3n-1i=103C1ixi~ >Mn}+P{~03A3~i=n03C1ixi~>t=Mn}

=P{~03A3~i=n03C1 ix i~>t-Mn}.

By symmetry, the variables 03A303C6"ixi and 03A303C1ixi-03A3(03C6"i-03C1i)xi are identically

distributed and therefore, using (2.6) we get

(2.10) P{~03A3~i=n03C1ixi~>t-Mn}2P{~03A3~i=n03C6"ixi~>t-Mn}

C03A3~i=n~xi~03B1/03B1(t-Mn)03B1
for t large enough. The last two sets of inequalities yield
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which gives the limit (ii) as noo. Q
The next theorem, which is the main result in this section, deter-

mines exactly the Banach spaces where the "classical condition" (2.2)’

is necessary and/or sufficient for The following observation

is pertinent: a stable law of order a for every a; we will

write XEDNA (6 x )=DNA a (6 ) 0 if there exists {b. such that n
in probability.

2.3. Theorem. Let B be a separable Banach space, p a stable p.m. of

order a on B, with associated Levy measure p, and X a B-valued rv. Then:

(1) If XEDNA(p) then

(2.2)’ for all 6>0 (with no restrictions on B).

(2) If B is of type p Rademacher for some p>a then condition (2,2)’’

is also sufficient for XEDNA(p).

(3) If condition (2.2)’ is sufficient for X~DNA03B1(03B40) then B is of

stable type a.

(4) If condition (2.2)’ is sufficient for XfDNA(p) for all B-valued

X and stable non-degenerate p.m.’s p of order a, then B is of

stable type a.

Remarks. 1. By Proposition 2.2 in Maurey and Pisier [19], B is of type

p-Rademacher for some p>a if and only if it is of type a stable, ae(0,2).
Hence 2.3(2,3) characterize Banach spaces of stable type a.

2. In (3), it is enough to consider random variables X defined through

series, as it will become apparent in the proof.

3. 2.1(1) was proved by Araujo and Gine ~7~ in general, and by Marcus

and Woyczynski [17,18] in some particular cases; (2), by Araujo and

Gine [7] in general and simultaneously and with different methods, by

Woyczynski [23J in the symmetric case (although both rely on work of
Le Cam for their proofs; the relevance of Le Cam’s work to this

subject seems to have been first noticed by A. Araujo); [23] gives
(2.2’) in the form 2.1(2) and [7], in the forms 2.1(3 and 4). (3) and

(4) are due to Marcus and Woyczynski [l7]; Mandrekar and Zinn [16] have

another proof. The proof of (3)-(4) here is borrowed from [16] and L17~.
Proof. (1) is an immediate corollarv of Theorem 1.2. 

’

(2). We will prove that under the stated conditions, (1)-(3) in Theorem

1.2 are satisfied, and therefore that the conclusion in (2) holds.(2.2)’
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implies (2.5) (proof of Proposition 2.1). From the first limit in

(2.5) we conclude that

for every fEB’. Then, as in (2.4) we get 
lim03B4~0supnn1-2/03B1 ~X~~03B4n1/03B1f2(X)dP

and this gives condition (2) in Theorem 1.2 with ~(f,f)=0. Let now

F t, UF =B, F finite dimensional subspaces of B. Since B/F is of
n m m m

type p Rademacher with the same difining constant as B, Cp, if Xi are

i.i.d. with L(Xi)=L(X), we get by (3ii) in Proposition 2.1 (and the

remark after it) that

supnEdp[(Sn,03B4-ESn,03B4)/n1/03B1,Fm]~Cpsupn03A3nj=1En-p/03B1EdP(Xj,03B4n1/03B1-EXj,03B4n1/03B1,Fm)

~2pCpsupnn1-p/03B1Edp(X03B4n1/03B1,Fm)

where the last inequality is proved with a computation similar to (2.4)

(with p instead of 2). So (3) in Theorem 1.2 is also proved. This ends

up this part of the theorem as (1) in 1.2 is precisely (2.2)’.

(3) Assume B is not of stable type a but satisfies the hypothesis in

statement (3). Then there exists some sequence such that

but does not converge a.s., and therefore, does not con

verge in probability either. (As in Proposition 2.2, ~i are real i.i.d.
rv’s with ch.f. ). So, for some c>0 and sequence we have

P{~ 03C6ixi

~~~}~~.

If 03C6"i are as in Prop. 2.2, then the variables Xk=03A3 03C6"ixi, symmetric,

belong to the DNA of 03A303C6ixi (as 03C6"i~DNA(03C6i) and the sums are finite).

Therefore, are independent copies of 03C6i, there exist mk~~ such that

(2.11) P{~03A3 (03C6"i,1+...+03C6"i,mk )xi/m1/03B1k~>~/2}~~/2.

Take now 03C1i,r-03C6"i,rI{|03C6"i,r|~dk} for nk~ink+103C1i03C6"iI{|03C6"i|~dk}) where

{dk} is chosen so that

(2.12) 

Then, (2.11) and (2.12) give

P {~03A3
1 

(03C1i,1 +,..+03C1i,mk )xi/m1/03B1k ~>~/2}~~/4.
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By a symmetry argument just as in (2.10) we obtain

thus proving that the series X=E. i=1 p.x, i i does not satisfy 

in probability. However, by Proposition 2.2, Hence (2.2)’ is not

sufficient for X~DNA03B1 (03B40) in B.

(4) We will prove that if B satisfies the hypothesis in (4), then it satisfies that

in (3).

Let X be a B-valued symmetric rv verifying (2.2)’ for u=0, let  be

a standard real symmetric stable rv of order in 2.2)

independent of X, and let Define Apply inequalities

(2.7) for a continuous seminorm with Xl=X, X2=~x, multiply by ta

and take limits as to get

(as With ), F as in
m m

Proposition 2.1(3), the last limit gives condition (3ii) in 2.1 because

It is easy to see that the following analogues of (2.7) also

hold true (Feller [10]p.278): if ~Z and ~2 are real independent rv’s 
’

then

(2.13) 
P{~l+~2>t}>P{~1>t(1+e)}P{~>-te}+P{~2>t(1+E)}P{~l>-te}

P{~1+~2>t}P{~1>t(1-e)}+P{~2>t(1-e)}+P{~l>ts}P{~2>te}
and analogously for P{~1+~2-t}. Applying these inequalities to f(Y),

fEB’, and proceeding as before, we get 

= 

which proves Hence, Y satisfies 2.1(4), and Proposi-
tion 2.1 implies that Y satisfies condition (2.2)’ with u defined as

and 6=2(~x+S-x)~0, which is the Levy mea-

sure of the stable variable ~x. Hence the hypothesis on B implies

Therefore, if independent and distributed

as X and ~, we get L(En i=1 n 
l/a 

But since

this implies in probability, i.e.

the hypothesis in (3). Q
Theorem 2.3 in the case of symmetric variables takes a pleasant

form if one uses Proposition 2.1, (1) =>(4) . We will give an application:

2.4. Proposition. (1). Let B be of type p-Rademacher for some p>a

(0a2), let {~i} be real independent, symmetric stable rv’s of order a

as in Proposition 2.2 and let {03C8i} be real independent symmetric rv’s
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such that 03C8i~DNA(03C61) . Then if X=03A3~i=103C8ixi(xi~B) exists and

(2,14) lim sup
m 

lim sup t~~t03B1P{~03A3~i=m 03C8ixi~>t}=0,
We have that 03A3~i=103C6ixi exists, X~DNA(03A3~i=103C6ixi), and

limt+~t03B1P{~ 03A3~i= 103C8ixi~>t} =203A3~ xi~03B1 /03B1~.

(2) If (2,14) implies that 03A303C6ixi exists, then B is of type 03B1-stable.

Proof. By (2,14), if F = linear span of {x1 ,... ,x }, thenm i m

~~~ 

i.e. X=03A303C8ixi satisfies 2,1(3ii). By (2.7) and (2.1),for every n,m>0,
203A3ni=1~xi~03B1
/ 03B1~l i m inf t~~t03B1P{~ 03A3~i=103C8i x i~ >t} ~

~lim supt~~t03B1P{~03A3~i=103C8ixi~>t}~203A3mi=1~xi~03B1/03B1 +

+ lim supt~~t03B1P{~03A3~i=m+103C8ixi~ >t}

(as in the proof of Proposition 2.2, (2.8) and (2.9)). Hence letting

first n and then m tend to /x>, we get that 03A3i~xi~03B1~ and that
i i

lim t~~t03B1P{~ 03C8ixi ~ >t}=203A3~i=1 ~xi ~03B1/03B1. In particular , by Theorem 1.1
t+/x> i=I i I i=I I

03A303C6ixi exists.

The same argument using inequalities (2,13) for f(03A3i03C8ixi), feB’,
gives us that

limt~~t03B1P{f(03A3i03C8ixi)>t} = 03A3|f(xi)|03B1/03B1 = limt~~t03B1P{f(03A3i03C8ixi-t},
t+m i l i i t+m I i I

I,e, that f(03A3i03C8ixi)~DNA(03A3i03C6if(xi)), or 2,1(3i) for fl=f.

Hence, Proposition 2,I and Theorem 2.3 show that 03A3i03C8ixi~DNA(03A3i03C8ixi).

(2) . If B is not of type a stable, let {x}B be such that 03A3~x~03B1~i i

but such that 03A303C6,x, is divergent, {03C6} as in 2.2. Let 03C6" be as in 2.2
1 1 1 1

too. Then 03C6"i~DNA(03C61) and by 2.2(i), limm limt~~t03B1P{~03A3~i=m03C6"ixi~>t} =

I m t+/x> i=m i 1

2lim ~x~03B1/03B1=0, I,e. (2,14) holds. G
m i=m i

Remark. 2.4 (1) is essentially contained in [7] , and [17] has a

slightly weaker version. 2.4 (2) is in [17].
The next natural question about domains of attraction is to ob tain

results on DNA in those spaces where this theory does not hold, in

particular, in C(S) , S compact metric. A first result in this direction

can be found in Araujo and Giné (7] (see Section 4 in this paper).

3. General Domains of attraction. In this section we consider the same

questions as in the preceding one, but for the general case. The main

difference here is that we must borrow some results from the theory of

regularly varying functions.
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We start by giving several equivalent formulations of the classical

conditions (Feller r10~ ,p. 313) .
3.1. Proposition. Let 6 be a finite Borel measure on SB,6#0, 
and let X be a B-valued rv. Then the following are equivalent:

(1) there exists such that

(3.1) for every d>0.

(2) there exists such that

(2i) 1)) for every continuous linear Tr

n

on B with finite dimensional range (or f(X) ~DA{a }(cPois( of- 1))
n

for every fEB’, if p and X are symmetric).

(2ii) there exists also a sequence {Fm} of finite dimensional

subspaces of B,Fm ~, ~Fm=B such that

(3.2) limm supnnP{d(X,Fm)>an}=0.
(3) the function is slowly varying and

(3.3) 

for every Borel set WcS such that o(3W)=0.

Proof. (1) =>(2). First note that if is a continuous seminorm

such that for all r>0 (as is the case for fE:B’.. or

F a closed subspace -see proof of 2.1, (1) =>(3)), then

(1) implies that the function is slowly varying: if nt
is the largest n such that a t, then

(3.4) [nt/(nt+1)](nt+1)P{x>ant+1}/ntP{X>ant u}~P{X>t}/P{X>tu}

~[(nt+1)/nt]ntP{X>ant}/(nt+1)P{X>ant+1u};
(change of variables ) we get from (1) and

the previous inequalities that

i.e. that is regularly varying with exponent -a.

Suppose now that (1) holds. For consider . Then

by Cl0~p.2$1, and therefore

we can perform a computation analogous to (2.4):

(3.5) lim03B4~0lim supnna-2n|f(X)|~03B4anf2(X)dP
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~lim03B4~0 lim supn2na-2n(2-03B1)-103B42a2nP{|f(X)|>03B4an }
= lim03B4~0 2(2-03B1)-103B42-03B1 {|f(X)|>1}=0.

Since, as in (2.5), we also have from (3.1) that

for every 6>0, we conclude by the f . d. CLT that °

n

Finally, (2ii) follows also as in the proof of 2.1 ((1) =>(3)) with a

for n 1/a . 
n

(2) =>(1). By (2ii) and (2i) for is flatly con-

centrated and has uniformly tight one dimensional marginals, hence it

is a uniformly tight sequence. The unicity of the limit follows from

(2i) as in 2.1 ((3 =>(1)). The symmetric case can be treated via Cramer-

Wold as in 2.1.

(1) =>(3). We have already seen above that (1) implies that 

is slowly varying. The rest is also easy: obviously for any integer k,

by (1); therefore, if n tis as

in (3.4), we obtain (3.3) by taking limits in the obvious inequality

t t

II an + 1 } .
t t

(3) =>(1). is slowly varying, and if

an = sup { t: 
then the properties of slowly varying functions show that an~~,

an/an+1~1 and limnnP{~X~>an}=03C3(S)/03B1 (these properties of {an}follow
easily from the representation theorem for slowly varying functions,

[10] page 282). Hence, by (3.3),

for all t>0 and a-continuity set WCS. Now (1) follows as in 2.1((1)=>(2)). []

Remark. (3) is interesting in that it does not presuppose knowledge of

{an}, although in fact {an} is implicit in the function t03B1P{~X~>t}. This

condition appears first in Mandrekar and Zinn [16]. For a somewhat more

complicated but equivalent condition of this kind, see Araujo and Gine

[?],4.10 (i a and b) (Kuelbs and Mandrekar [l4], (4.2), for the Hilbert

space case).

3.2. Theorem. Let B be a separable Banach space, p a stable p.m. of

order a on B with associated Levy measure p=p(a,o), and X a B-
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valued rv. Then:

(1) If XEDA(p) then condition 3.1(3) holds (and also 3.1(1) and 3.1(2)

for the sequence {an} such that X~DA{an}(03C1)).

(2) If B is of type p Rademacher for some p>a, then condition 3.1(3)

is also sufficient for XEDA(p). 3.1(1) or 3.1(2) for {a } imply

X~DA{an}(03C1).
(3) If condition 3.1(3) (3.1(2) or 3.1(1) for some {an})is sufficient
for XEDA(p) (XEDA{a }(p)), then B is of type a stable.

n
Proof. (3) is contained in Theorem 2.3(3). (1) is just condition (1)

in Theorem 1.2. So we need only see (2). We will use Theorem 1.2.Con-

dition 3.1(3) implies 3.1(1) for some sequence {an} such that 
by the last proposition. Therefore, the triangular array mM,

kn, where the Xk are independent copies of X, is infinitesimal and

satisfies condition 1.2 (1). Moreover, by (3.5), it also satisfies 1.2

(2) with ~(f,f)=0. And if F is a sequence of f.d. subspaces of B,

F t, UF =B, and K =u{d(X,F )>1}, since K-~0 and the function taP{d(X,F )>t}
m m m m m m

is slowly varying (take x=d(x,Fm) in (3.4)), the theorem in [10]
p.281 and (3.1) give, in analogy with (3.5), that

limm lim 

lim 
~lim m lim sup n Cp 03A3nk=1Edp(X nk03B4-EXnk03B4,F m)

~2pCplimm lim supnna-pnEdp(X03B4an ,Fm)
~2pCplimm lim supnna-pnpup-1P{d(X,Fm)>u}du

=2pC p limm lim supnna-pnp(p-03B1)-1(03B4an)pp(d(X,Fm)>03B4an}
=2PC lim nP{d(X,F )>a }

p m n m n

=2pC K =0.
p m m

And this is condition 1.2(3). Hence is shift convergent

to p. D

Next we generalize the two propositions on series given in the

previous section.

3.3. Corollary. Let B be of type symmetric independent,
h a slowly varying function and {x.}CB, such that exists and

(i) lim ~t~P{~.~>t}/h(t)=2 for every i~)N, 
’
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(ii) lim sup lim 
Then exists (where {03C6i} is as in 2.2), 

= 203A3~i=1~xi~03B1/03B1, and 03A3~i=103C8ixi~DA{a }(03A3~i=103C6ixi) where an=sup{t:nt-03B1h(t)~1}.
n

Proof. By the definition of slowly varying function we have that,

exactly as in 2.4,

~lim supt~~t03B1P{~03A3~i=103C8ixi} >t}h(t)~203A3mi=1~ xi~ 03B1/03B1+lim supt~~t03B1P{~03A3~i=m+103C8ixi~ >t}/h(t)

for arbitrary n and m in M. Therefore, the tail behavior of is

as stated and in particular, exists. The same type

or argument shows that

1 ~~ ~ I for every

fEB’ . This implies that 
n 

_
is slowly varying and a 

n n 
la and na n h(a n )-~-1 by standard facts

on slowly varying functions, as mentioned above.

Using the computation at the start of this proof and the proper-
ties of {an}, and setting Fm=linear span of {xl,...,xn}, we obtain
0 = limm203A3~i=m~xi~03B1/03B1=limmlimt~~t03B1P{~03A3~i=m03C8ixi~>t}/h(t)

= limm limnnP{~03A3~i=m 03C8ixi~>an }~lim lim sup nP{d(X,Fm )>an }.

Now, Theorem 3.2(2) gives the result. Q
With the next corollary we obtain concrete examples of application of

3.2 with a 
n

3.4 Corollary. Let B be of type 03B1-stable, 03C8 real symmetric such that

symmetric stable of order a as usual, and let 

Let ci>0 be such that and {x.}CB such that for some t o >0,
(3.6) 

o

Then, if are independent copies of 03C8, }), and we

have that where the a 
n 

are as in 3.3.
n

Proof. Note that by (3.6), and for

all t>0. By the previous corollary it is enough to show that

(3.7) limt~~t03B1P{~ 03A3~i=103B8ixi~>t}/h(t)=203A3~i=1~xi~03B1/03B1
(then 3.3(ii)follows applying (3.7) to the tail sums). The proof is

similar to that of 2.2(i). then
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(3.8) :

just note that as in 2.2 we can obtain

for some sequence t k too and all natural j (the only additional fact

needed to prove this, besides use of the definition of slow variation,

is that 03A3~i=1~xi~03B1h(t/~xi~)/t03B1~0 as because of (3.6) and the fact

that h(t)/t~~0 for all e>0 at this follows by dominated conver-

gence). Then, again as in 2.2, by (3.8), .

inft~~t03B1P{~03A3~i=103B8ixi~ >t}/h(t)

~lim supt~~t03B1P{~ 03A3~i=103B8ixi~ >t}/h(t)

~203A3mi=1~ xi~03B1/03B1 +Clim supt~~03A3~i=m+1~ xi~ 03B1h (t /~xi~) /h (t) 

~203A3mi=1~xi~03B1/03B1+C03A3~i=m+1~ xi~03B1limt~~h(t/~xi~ /h ( t ) 

- 2~m=l~l 
for every n, mEN, and this proves (3.7). a
Remark. Here there are some examples for which condition (3.6) is satisfied.

1) If h(t)-~c as t-~o, , then (3.6) reduces to and Corollary

3.4, to 2.2 and 2.4.

2) If for some e>0, then (3.6) is satisfied for any

slowly varying function h. In fact, by the representation theorem [10),
p.282, there exists t such that for t>t , 

~2exp(log(t/~xi~)-logt)=2~xi~-~.

3) If h(t) is eventually decreasing as ! (for instance if 
~0) then (3.6) reduces to 

4) If then (3.6) is equivalent to .4) If h (t)~c (logt)03B2 ,8>0, then (3.6) is equivalent to 03A3~i=1~xi~03B1 (log~ xi~-1)03B2 00.

4. Preliminary results in the case B=C(S). The results obtained so far

for B=C(S) still seem to be far from definitive. In general they arecon

sequences of the Dudley-Fernique theory for sample continuous Gaussian

processes. A first question is how to generate stable p.m.’s on C(S).
The following theorem,obtained independently by A. Araujo and M.B.Marcus

(private communication) and by this author, gives a way for this. We re-

call first a definition from ~4~: a continuous pseudo-distance e on S is

L.P.I (implies Lipschitz paths) if there exists a continuous pseudo-dis-
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tance p on S such that every Gaussian process X on S with the property

that C>0, s,tES, has a version with almost

all its sample paths in Lip(p). For instance if J’ 
0

where H is metric entropy or,more generally, if X satisfies the condi-

tion of "mesure majorante" of Fernique, then e is L.P.I. (see the refe-

rences in ~4~). We choose a point aES and set

I for all In what follow.s,

S is a compact metric space.

4.1. Theorem. Let Let {03C3i}i~I be a family of finite

positive measures on U and aE(0,2) such that

(4.1) 

Then for each iEI the measure ui=u(a,6i) is the Levy measure associa-

ted to a stable p,m, 03C1i,03B4=c03B4Pois i on C(S), and the family of p,m.’s

{pi,d}iEI is relatively compact for every d>0.

Proof. By Theorem 4.10 in ~4~ it is enough to show that {ui ~ ~~x ~~e>1}i~I
is a relatively compact family of finite measures and that

supi~Imin(1,~x~2e)d i(x)~. But the hypothesis (4.1) easily implies
these two conditions:

~ 

a lm as m~~,

and this proves the first condition as the sets {x:~~xl~ e m} are compact
in C(S); also,

_ ~( 2-a ) 1+a lI (u) ~. D

An immediate corollary:

4.2. Corollary. If and {~i} are real symmetric

rv’s stable of order a, then the series converges a,s, in

C(S) and is a stable of order a, symmetric,C(S)-valued rv.

Proof . App ly Theorem 4 .1 to 03C3=03A3~j=1~xj~03B1(03B4xj/~|xj~+03B4 -xj/~xj~). []

A. Araujo and M.B. Marcus have stronger results for stationary

stable processes (as stated by Marcus in this conference) and examples

on 4.2.
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Next we give a sufficient condition for a C(S)-valued rv X to be

in the domain of normal attraction of a stable law of order aé(0,2).
It is taken from ~7~ and is based on some of the work in [4]. More

general cases can be covered with the same technique.

4.3. Theorem. Let X be a C(S)-valued rv, e a L.P.I. pseudo-distance in

S and M a non-negative real rv such that:

(i) the finite dimensional distributions of X belong to the domain

of normal attraction of a stable p.m. of order a in Euclidean

space,

(ii) lim sup 

(iii) for every s,tES and almost all 

Then X is in the domain of normal attraction of a stable p.m. on C(S).

Proof. By (i) and considerations on centering as in [4], it is enough
to prove that {L(S is shift tight, where S X. J i.i.d.

with L(X.)=L(X).Then, by Theorems 3.1 and 4.10 in ~4~ it suffices to

check that the ) satisfy the requirements of

ui in the proof of 4.l.But this follows as in previous proofs:

lim sup 

+lim 

as also, the computations (2.4) show that sup 

and therefore, using (i) we get supnnmin(1,~S~2e/n2/03B1)dP~.[]

Acknowledgement. The last part of Section 3 was motivated by a question
of V. Mandrekar and M. B. Marcus.
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