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Complements of the Socle in Almost Simple Groups.

A. LUCCHINI (*) - F. MENEGAZZO (**) - M. MORIGI (***)

Assume that a finite group H has a unique minimal normal subgroup,
say N , and that N has a complement in H . We want to bound the number
of conjugacy classes of complements of N in H ; in particular we are loo-
king for a bound which depends on the order of N . When N4soc H is
abelian, the conjugacy classes of complements of N in H are in bijective
correspondence with the elements of the first cohomology group
H1 (H/N , N). Using the classification of finite simple groups, Aschbacher
and Guralnick [1] proved that NH1 (H/N , N)NENNN ; therefore, when
soc H4N is abelian, there are at most NNN conjugacy classes of comple-
ments of N in H . To study the case when N4soc H is nonabelian we can
employ a result proved by Gross and Kovács ([6], Theorem 1): there
exists a finite group K containing a (non necessarily unique) minimal
normal subgroup S which is simple and nonabelian (indeed S is isomor-
phic to a composition factor of N) and there is a correspondence between
conjugacy classes of complements of N in H and conjugacy classes of
complements of S in K . Using this result it is not difficult to prove that
there exists an absolute constant cG4 such that the number of conjuga-
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cy classes of complements of N in H is at most NNNc (see, for example, [9]
Lemma 2.8). We conjecture that one can take c41, as occurs when N is
abelian.

In this paper we deal with this conjecture in the case of finite almost
simple groups. Let G be a finite simple group. As G`Inn (G), we may
identify G with Inn (G). We will prove the following

THEOREM. Let G be a finite non-abelian simple group and assume
that HGAut (G) contains G. Then the number of conjugacy classes of
complements of G in H is less than NGN.

When G4Alt (n) with nc6 or G is a sporadic simple group, it is well
known that NH : GNG2; if HcG , then the complements of G in H are in
bijective correspondence with the involutions of H which are not contai-
ned in G ; hence the number of complements for G in H is strictly smaller
than NGN . The case G4Alt (6) `PSL (2, 9 ) is dealt with as a group of
Lie type.

We may now assume that G is a finite simple group of Lie type over a
field K4GF(p m ) of order p m , for some prime p . We will follow the defi-
nitions and notations of the book [4], unless otherwise stated. So G will
be a group of the form G4S l (q) where l is the Lie rank of G and q4p m ,
for some prime p .

Also, f denotes the Frobenius map and G denotes the group of graph
automorphisms of G .

If G has no complement in Aut (G) there is nothing to prove, so we
may assume that there exists CGH such that H4GC and GOC41.

Then we have that C is isomorphic to a subgroup of Out (G), whose
structure is well known. In particular, C is at most 3-generated. Also, if
x , y , z are generators of C and C 8 is any other complement for G in H ,
then C 8 is generated by three elements of the form xu1 , yu2 , zu3 sati-
sfying the same relations as x , y , z and with ui �G , for i41, 2 , 3 .

In the whole paper, C will be a fixed complement for G in H .

1. Preliminary results.

We collect in this section some results which will be very useful in the
sequel. The first is actually a corollary of Lang’s theorem, in the general
form proved by Steinberg.
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PROPOSITION 1.1. Let G be an untwisted finite simple group of Lie
type over the field K with p m elements. Let f r a�Aut (G), with a�
�InnDiag (G)G , and assume that Nf r aN4m/r . If x�InnDiag (G) is such
that Nf r axN4m/r then f r a and f r ax are InnDiag (G)-conjugate.

PROOF. Let G4S l (p m ) and let G be the connected algebraic group
over the algebraic closure K of K such that G is adjoint and G4

4O p 8 (CG (f m ) ) (see [4, Theorem 2.2.6 (e)]). By Lemma 2.5.8. (a) of [4] we
have that InnDiag (G) 4CG (f m ).

Let t x be the inner automorphism of G induced by x . There exists
a �Aut (G) such that a is the product of a graph automorphism and an
inner automorphism, and a induces a on G . We note that (f r a)m/r 4

4 (f r at x )m/r 4f m . So f r a is a surjective homomorphism c of G whose
set of fixed points in G is finite. By the Lang-Steinberg theorem
(see [Theorem 2.1.1] [4]) there exists w � G such that x 21 4 w21 wf r a .

Let s4
m

r
. We have that: f m 4 (ct x )s 4c s t x

c s21
t x

c s22
R t x

c t x 4

4f m t x
c s21

t x
c s22

R t x
c t x , so t x

c s21
t x

c s22
R t x

c t x 41. As x4(w21 )c w we
obtain that (t w

21 )c s
t w 41, so t w

fm

4t w , that is w �InnDiag (G).
It follows that (f r a)w 4 w21 f r aw 4f r a(w21 )f r a w 4

4f r a(w21 wf r a )21 4f r ax , as we wanted to prove.
We will also need a lemma proved in [8].

LEMMA 1.2. Let G be a finite simple group of Lie type, and let a�
�Aut (G) then there exists g�G such that NaNcNagN .

Our first results are easy consequences of the proposition and lemma
above.

PROPOSITION 1.3. Let G be a finite simple group of Lie type, GG

GHGAut (G) and assume that a complement C for G in H is cyclic. Then
the number of complements for G in H is less than NGN .

PROOF. If C4 aab, then any other complement C 8 is generated by an
element of the form ag , with g�G and NagN4NaN , and lemma 1.2
applies.

COROLLARY 1.4. Let G be a finite simple group of one of the follo-
wing types: 3D4 (q), G2 (q), F4 (q), E8 (q), 2F4 (q) or 2G2 (q) and let GGHG

GAut (G). Then the number of complements for G in H is less than
NGN .
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PROOF. By Theorem 2.5.12 of [4] the groups listed above have cyclic
outer automorphism group, so proposition 1.3 applies.

PROPOSITION 1.5. Let G be an untwisted finite simple group of Lie
type over the field K . Assume that C4 af r a , bb, with a�InnDiag (G),
b�InnDiag (G)G0Inn (G) and Nf r aN4Nf rN . Then the number of G-
conjugacy classes of complements for G in H is less than NGN .

PROOF. If C 8 is another complement for G in H , then the first gene-
rator of C 8 is of the form f r ag , with g�G and Nf r agN4Nf r aN4Nf rN ,
so by proposition 1.1 we have at most d4NInnDiag (G) : GN choices for it,
up to G-conjugation. Moreover, again by proposition 1.1, we may assume
that f r ag4 (f r )x for some x�InnDiag (G). So C 84 af r , (bv)x 21

bx , for
some v�G . We now need to count the choices for the second generator,
which is of the form (yu)x , where y4b x 21

and v4u x 21
. By lemma 1.2 we

have less than NGN choices for u , as NyuN4NyN . Moreover, as we are
counting G-conjugacy classes of complements, we may count the ele-
ments of the form yu up to conjugation by elements of the centralizer of
f r in G . If G4S l (q) then S l (p) GCG (f r ). We have that [yu , S l (p) ] c1
(see [Lemma 2.5.7] [4]), so that CS l (p) (yu) is a proper subroup of S l (p).
As the index of a maximal subgroup of S l (p) is at least d (see Table 5.2 A
of [p. 175] [7]) each orbit of the set ]yuNu�G( under the action of S l (p)
by conjugation has at least d elements. This concludes the proof.

PROPOSITION 1.6. Let G be an untwisted finite simple group of Lie
type over the field K . Assume that C4 af r a , bb, with a , b�
�InnDiag (G)G , InnDiag (G) GH and Nf r aN4Nf rN . Then the number of
G-conjugacy classes of complements for G in H is less than NGN .

PROOF. If C 8 is another complement, by proposition 1.1 we may as-
sume that the first generator of C 8 is (f r a)x , for some x�InnDiag (G).
Let C 84 a(f r a)x , bub, where u�G . As InnDiag (G) GH4GC 8 we have
that x4zy for some z�G and some y�C 8 , so that C 84 a(f r a)z , (bu)y 21

b
is G-conjugate to a complement of the form C 94 af r a , vb. It follows that
the first generator of C 8 is uniquely determined, up to G-conjugation. By
lemma 1.2 the number of choices for the second generator of C 8 are less
than NGN , and the conclusion follows.

We recall that if a�H , then a is of one of the following types: inner,
inner-diagonal, graph, field or graph-field (see [4], definition 2.5.13).
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PROPOSITION 1.7. Let G be a finite simple group of Lie type over the
field K . Assume that C4 aa , bb, where the type of a is known and b nor-
malizes aab. Then the number of conjugacy classes of complements for G
in H is bounded by rs , where r is the number of G-conjugacy classes of
elements of H of the same type and order as a and s is the order of a ma-
ximal subgroup of G .

PROOF. If C 8 is another complement for G in H , we have that C 84

4 aau , bvb, for some u , v�G , where NauN4NaN , NbvN4NbN and if a b 4a t

for some integer t , then (au)bv 4 (au)t . There are at most r choices for
au , up to G-conjugacy. Moreover, any two elements bv 8 and bv 9 such
that (au)bv 84 (au)bv 94 (au)t satisfy (bv 8 )21 bv 9�CG (au), so there are at
most NCG (au)N choices for the second generator, and the conclusion
follows.

2. The special linear groups.

Let K be the finite field with q elements, with q4p m for some prime
number p . As usual GL(n , q) (resp. SL(n , q)) will denote the general
(resp. special) linear group of degree n over the field K . In the following
we will identify the multiplicative group K 3 of K with the subgroup of
GL(n , q) consisting of scalar matrices. Then PGL (n , q) 4

4 GL (n , q) /K 3 , PSL(n , q) 4SL(n , q) K 3 /K 3 and if g� GL (n , q) its
image in PGL (n , q) will be denoted with g. Also, as usual, det (g) will in-
dicate the determinant of a matrix g and diag(a1 , R , an ) will denote a
diagonal matrix, whose entries on the diagonal are those listed between
the brackets.

In the whole section, we will consider G4An21 (q) 4PSL (n , q), for
n and q fixed. Let f be the Frobenius automorphism of GL (n , q), given
by: (aij )f4 (aij

p ), for i , j41, R , n .
Let t : GL (n , q) K GL (n , q) be the automorphism defined by g t4

4 (g ! )21 , where g ! denotes the transposed matrix of g .
Both f and t induce automorphisms of PGL (n , q), which we will still

indicate by f and t . f generates the group of field automorphisms, t is a
graph automorphism if nF3, and it is an inner automorphism if n42.
Also, PGL (n , q) /G is cyclic of order d4 (n , q21).

We have that C is isomorphic to a subgroup of Out (G) 4

4 afG , tG , aGb, where a� PGL (n , q), (aG)fG 4a p G , (aG)tG 4a 21 G ,
[fG , tG] 41 and NaGN4d , NfGN4m , NtGN42.
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Case A: C is 3-generated

In this case C has the group Z2 3Z2 3Z2 as an epimorphic image and
d is even, so that p is odd and nF4 is even.

We may assume that C4 af r N1 , tM1 , U1 b, where M1 , N1 , U1 �
� GL (n , q) and rNm . Also we have that U1 has order d 8 , with 2Nd 8 Nd and
we also have that (f r N1 )m/r � aU1 b.

LEMMA 2.1. In the above setting, we may also assume that
[f r N1 , tM1 ] 41 and tM1 has order 2.

PROOF. As C is isomorphic to a subgroup of Out (G), it will be isomor-
phic to a subgroup T of the group X4 aa , b , cNa d 4b 2 4c m 41, a b 4

4a 21 , a c 4a p , b c 4bb where p is a prime and p m
f1 modd. Since T is not

2-generated, TO aa , bb and Taab /aab are not cyclic; in particular m is
even. Set aa l b 4TO aab. If b�T , easy calculations prove that T4

4 aa l , b , c k b where both a l and c k have even order. Assume that b�T and
ba�T . Note that CX (ba) 4 aa d/2 , ba , ub where u4ca

2
p21

2 . Similar com-
putations prove that T4 aa l , ba , u k b, where l is even, and the orders of
a l and of u k aab are even. As any subgroup of X which is not 2-generated
is aab-conjugate to a subgroup containing either b or ba , the result
follows.

OBSERVATION. With the notation of lemma 2.1 we note that it is pos-
sible that T does not split over TO aa , bb. Namely, T4 aa l , ba , u k b is
not 2-generated and does not split over TO aa , bb iff pc2, l , d , m/k are

even,
p m 21

d
is odd, the order of a l is divisible by 4 , and finally r2 E

E max ( (p k 21)2 , (p k 11)2 ) where we denote by x2 the 2-part of the
integer x . Also, if T does not split over TO aa , bb we have that u m has
order 2 .

CASE I: (f r N1 )m/r 41

We may assume that another complement C 8 for G in H is generated
by f r N1 X, tM, U, with X �G , M, U � PGL (n , q), satisfying the same
relations as f r N1 , tM1 , U1 . In particular (f r N1 X)m/r 41, so by pro-
position 1.1 there are at most d possibilities for the choice of f r N1 X,
up to conjugation by elements of G . Moreover, again by proposition
1.1, we have that f r N1 X 4 (f r )S , with S � PGL (n , q). Changing no-
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tations for the last two generators, we may now assume that C 84 a(f r )S ,
(tM)S , (U)S b.

We now have to count how many possibilities there are for the other
two generators. From the fact that tM has order 2 it follows that
Mt M 41, so M !4aM , with a�K and as (M ! )!4M we have that
a 2 41, so that M is symmetric or skew-symmetric.

From the fact that [f r , tM] 41 it follows that M f r
4bM , with b�

�K 3 . This implies that mij
p r21 4b for each i , j41, R , n such that mij c

c0. Choose h , k such that mhk c0. Thus, for each i , j41, R , n we have
that mij mhk

21 �GF (p r ) , that is mij 4mhk m 8ij for some m 8ij �GF(p r ). It fol-
lows that M4mhk M 8 , with M 8� GL (n , p r ). Choosing M 8 instead of M
as a pre-image of M we may assume that M� GL (n , p r ).

As we are counting conjugacy classes of complements, we note that to
count the possibilities for the second generator of C 8 we are still free to
conjugate it by an element H of G centralizing f r , that is H�SL (n , p r ).
Note that in that case we have that (tM)H 4tH! MH, and by [3] there
exists H� GL (n , p r ) such that H ! MH has one of the following forms:
identity, diag (a , 1 , R , 1 ), where a is a non-square in GF (p r ), or a
block-diagonal matrix whose blocks on the diagonal are all equal to

g 0
21

1
0
h .

As we are allowed to conjugate by matrices in PSL (n , q) and not in
PGL (n , q), we have at most 3d possibilities for M.

We now count the number of choices for U. We have that (U)tM4

4 (U)21 , so U !M 4gU , with g 2 41, and we have at most q n(n11) /2 possibili-
ties for U for each choice of g . So we have at most 2q n(n11) /2 /(q21) pos-

sibilities for U, and thus at most
6d 3 q n(n11) /2

(q21)
ENGN possibilities for C 8 ,

as 6q n11 E (q 3 21)(q n 21) for nF4 and qF9.

CASE II: (f r N1 )m/r
c1

In this case
m

r
is even. Actually, if

m

r
is odd, putting x4tM1 ,

y4f r N1 , if m42t s , with
m

r
Ns , then C4 ax , y 2t

, y s , Ub 4 axy 2t
, Ub, as

y s � ay m/r b � aUb. So C is 2-generated, contradicting the assumptions.
Again, we may assume that another complement C 8 is generated by

f r N, tM, U, satisfying the same relations as f r N1 , tM1 , U1 . In particu-
lar (tM)2 41. As in Case I, it follows that M is symmetric or skew-sym-
metric, and conjugating by a suitable element of PSL (n , q) we have at
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most 3d possibilities for M. Namely, we may assume that tM is of one of
the following types:

i) t S ,

ii) (tA)S , with A4diag (a , 1 , R , 1 ), where a is a non-square in K ,

iii) (tB)S , where B is a block-diagonal matrix whose blocks on the

diagonal are all equal to g 0
21

1
0
h .

Changing notations for the generators, we may assume that C 84

4 a(f r N)S , (tM)S , (U)S b, with M � ]I, A, B(. Also, there is no loss in gene-
rality in assuming S 41, as this does not affect calculations.

We now consider the generator f r N. Let m4det (N) and (f r N)m/r 4

4L .
In cases i) and iii) we have that [tM, f r N] 4 [tM, N] 41, so that

NtM4 N. It follows that (N 21 )!M 4gN , with g�K 3 , and m 2 �K n (here
K n is the set of elements of K which are n-th powers).

As
m

r
is even and p is odd it follows that 2N

(p r )m/r 21

p r 21
, so that

det (L) 4m
(p r )m/r21

p r21 �K n , which implies that (f r N)m/r �COG41 and
(f r N1 )m/r 4 (f r N)m/r 41, a contradiction.

We now deal with case ii). From [(tA), (f r N) ] 41 it follows that
Nt A 4 Af r

N, so N 2!4gA f r
NA 21 , with g�K 3 and m 2 4a 12p r

g2n .

As before, det (L) 4m
(p r )m/r21

p r21
fa

(12p r )
p m21

2(p r21)
f21 modulo K n , so

that L2 41 (note that
q21

d
is odd, as it is stated in the observation after

lemma 2.1).
We distinguish two subcases:

a) rG
m

4
. We first bound the choices for the generator of the form

f r N. By [p. 52] [5] f r B and f r C are conjugate in GL (n , q) if and only if
(f r B)m/r and (f r C)m/r have the same property, so we need to count
PGL (n , q)-conjugacy classes of involutions (f r N)m/r �
� PGL (n , q)0PSL (n , q). By Table 4.5.1 of [4] there are at most n/2 choi-

ces for (f r N)m/r , which means at most
n

2
PGL (n , q)-conjugacy classes

of elements of the form f r N, that is at most d
n

2
choices for f r N, up to

PSL (n , q)-conjugation.
Now once we have chosen an element tV as a second generator, from

the fact that (f r N)tV 4f r N it follows that all the other possible choices
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for the second generator are of the form tVU, where U �CG (f r N).
Let K the algebraic closure of K . By the Lang-Steinberg theorem [p.

32] [2] we have that f r N is conjugate to f r in PGL (n , K), so
NCPSL(n , K) (f r N)N4NPGL (n , p r )N . So we have at most NPGL (n , p r )N

choices for tV.
By our hypothesis, there exists R such that (tV)R21

is of the form tA,
with A4diag (a , 1 , R , 1 ), where a is a non-square in K .

We may assume that the third generator is of the form (U)R .
We have that UR(tV) 4 (U)R(tA)R

4 (UtA )R , and as (UR )(tV) 4 (U21 )R , it
follows that U!A 4 U, that is U !A 4gU , with g� ]61(.

This means that, fixed g , U is determined by its entries along and
above the diagonal, so we have at most 2q

n(n11)

2 choices for U , and at mo-

st
2

q21
q

n(n11)

2 choices for U.

Putting all together, the number of conjugacy classes of complements

for G in H is at most Gd
n

2
NPGL (n , p m/4 )N

2

q21
q

n(n11)

2 ENPSL (n , q)N .

(Here we have used that 8Nn , because m is even, so that 8Nq21 and
q21

d
is odd).

b) r4
m

2
. We first bound the choices for the generator of the form

f r N.
As (f m/2 N)2 4 L has order 2 , the canonical form of L is either a dia-

gonal matrix whose entries on the diagonal are in the set ]6g(, for some
g�K 3 (first type), or it is a block-diagonal matrix, whose blocks on the

diagonal are all equal to g
1

gh , with g�K 3 (second type). By [p. 50]

[5], by conjugating by a suitable element of GL(n , q) we may assume
that N is block-diagonal matrix, whose blocks Ni on the diagonal are of
the form

Ni 4

.
`
`
`
`
`
´

0

1

0

QQ
Q

0

. . .

Q Q
Q

1

Q Q
Q

. . .

. . .

Q Q
Q

Q Q
Q

0

0

QQ
Q

QQ
Q

0

1

ai , 1

ai , 2

QQ
Q

QQ
Q

ai , mi

ˆ
`
`
`
`
`
˜

.
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So we may assume that also L is a block-diagonal matrix, whose blocks Li

on the diagonal have dimension mi .
We now want to prove that the canonical form of L is diagonal.
If mj F5 for some j it is easy to see that Lj cannot have order 2 . Also,

if the canonical form of L is of the second type, then 2Nmj for each j . Now
assume that mj 42 for some j . As Lj

2 is a scalar matrix, Lj is of the form

Lj 4 gx
z

y
2x

h . Moreover Lj is diagonalizable if and only if x 2 1yz is a

square. Let Nj 4 g0
1

b
a
h . Then Lj 4 gb p m/2

a p m/2
ab p m/2

b1a p m/211h , 2det (Lj ) 4

42b p m/211 is a square (note that 21 is a square) and it follows that Lj is
diagonalizable.

To conclude, assume that mj 44 for each j . We have that Lj is of the
form

.
`
`
`
´

1

1

1

a p m/2

b p m/2

c p m/2

d p m/2

ˆ
`
`
`
˜

.
`
´

1

1

1

a

b

c

d

ˆ
`
˜

4

.
`
`
`
´

1

1

a p m/2

b p m/2

c p m/2

d p m/2

x

x

x

x

ˆ
`
`
`
˜

.

So the first column of Lj
2 is

.
`
´

a p m/2

b p m/2

c p m/2

d p m/2

ˆ
`
˜

, which implies that b4c4d40. So

Lj 4

.
`
´

1
1

a p m/2

a
ˆ
`
˜

and Lj
2 4diag (a p m/2

, a , a p m/2
, a).

As L 2 is a scalar matrix it follows that a p m/2
4a and a is the same for

all blocks Lj . We have a4l u(p m/211) , for some integer number u , and
det L4 (a 2 )n/4 4l u(n/2 )(p m/211) , which leads to a contradiction because

dN
n

2
(p m/2 11).

It follows that L is diagonal.

So we have at most
n

2
choices for L and thus at most

n

2
choices for

f m/2 N, up to PGL (n , q)-conjugation. As we are counting PSL (n , q)-con-
jugacy classes we have to multiply this number by d .

We may also assume that L4 (L1 , L2 ) is a block diagonal matrix with
2 blocks on the diagonal of the form L1 4gIr1

and L2 42gIr2
, for some g
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in K 3 , where r1 1r2 4n . We note that r1 and r2 are both odd, otherwise
det (L) 4g n contradicting the fact that L �PSL (n , q). Moreover, as

8Nn , we have that r1 c

n

2
cr2 .

We have that M, N and U centralize L, so we may assume that they
are all block-diagonal matrices, with M4 (M1 , M2 ), N4 (N1 , N2 ) and
U4 (U1 , U2 ). (Note that if LS 4 L then L S 4aL for some a�K 3 , but

looking at the eigenvalues of L and keeping in mind that ri c
n

2
, it fol-

lows that a41, that is S centralizes L).
By proposition 1.1, we have that f m/2 Ni is conjugate to f in

PGL (ri , q), and so f m/2 N is conjugate to fD in PGL (n , q), with D4

4 (I1 , bI2 ) for some b�K 3 .
We now work separately on the two blocks, using exactly the same

strategy as in case I.
We may assume that M1 4jM18 , with j�K 3 and M18� GL (r1 , p m/2 ).

Moreover M1 is symmetric (note that r1 is odd). By conjugating with ele-
ments of GL (r1 , p m/2 ) we find that there are at most 2 choices for M18 ,
and at most 2(q21) choices up to SL(r1 , p m/2 )-conjugation. So there are
at most 2(q21)2 choices for M18 j . Arguing in the same way for M2 and
taking images in PGL (n , q) we obtain that there are at most 4(q21)3

choices for M.
The number of choices for Ui is now at most q ri (ri11) /2 (note that the

element g appearing in case I is now forced to be 1 , as ri is odd). So there
are at most q r1 (r111) /2 q r2 (r211) /2 /(q21) possibilities for U.

So we have at most
n

2
d4(q r1 (r111) /2 q r2 (r211) /2 )(q21)2 ENPSL (n , q)N

choices for C .

Case B: C is 2-generated

We may assume that C4 af r N1 , t e f s M1 b, where M1 , N1 � GL (n , q)
and e� ]0, 1(. We may also assume that any other complement C 8 is ge-
nerated by f r N, t e f s M, satisfying the same relations as
f r N1 , t e f s M1 .

CASE I: CGO InnDiag (G)G , (f r N1 )m/r 41
In this case we apply proposition 1.5.

CASE II: CGO InnDiag (G) G , (f r N1 )m/r 4 L1 c1, nF3
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Let u4NL1N . We now want to count PSL (n , q)-conjugacy classes of
elements of the form f r N. By [p. 52] [5] f r A and f r B are conjugate if
and only if (f r A)m/r and (f r B)m/r are conjugate, so we need to bound the
number of PGL (n , q)-conjugacy classes of elements L of order u , and
then to multiply this bound by NPGL (n , q) : PSL (n , q)N4d . As L u is a
scalar matrix, L is conjugate to a block-diagonal matrix X whose blocks
Xi have all the same dimension k and are of the form:

Xi 4

.
`
`
`
´

1

1

Q Q
Q

1

ciˆ
`
`
`
˜

,(1)

where ci 4ce i and e i
d 41. We may also assume c1 4c .

If k41 then there are at most (q21) d n21 choices for X and thus at
most d n21 choices for L, up to PGL (n , q)-conjugacy.

If kD1 there are at most (q21) d
n

k
21

choices for X .
So, summing over all k’s, the choices for L are at most

d n21 1 !
1 EkNd

(q21) d
n

k
21

.(2)

Note that d n21 1 !
1 EkNd

(q21) d
n

k
21

G (q21)
d n21 21

d21
.

We now have that Lte f s M4 Lt . Once we have fixed one element M
with that property, all the others can be obtained by multiplying M by an
element of the centralizer Z of Lte f s

in PSL (n , q), and we may assume
without loss of generality that Lte f s

has prime order u .
Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5.1 of [4]
for u42 and some easy calculations it is possible to see that an upper
bound for the order of Z is NGL (n21, q)N . We now have to check that

d(q21)
d n21 21

d21
NGL (n21, q)NENPSL (n , q)N , which is true for nF4

because d 2 (q21)2 d n21 21

d21
E (q n 21) q n21 . For n43 we use the more

accurate bound (2).
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CASE III: CGInnDiag (G) G , nF3.

If C is cyclic we conclude by proposition 1.3. Otherwise we first choo-
se a generator for C 8OInnDiag (G), so that the number of possibilities is
bounded by (2.6), then we argue as in case II.

CASE IV: n42

If C is cyclic we conclude by proposition 1.3, otherwise we first choose
a generator for C 8OInnDiag (G), for which there is at most one possibi-
lity, by Table 4.5.1 of [4], and by lemma 1.2 there are less than NGN choi-
ces for the second generator.

3. The unitary linear groups.

In this section, we will consider the group G42 An21 (q) 4

4PSU (n , q), for n and q fixed.
Let K4GF (q 2 ) be the finite field with q 2 elements, with q4p m for

some prime number p . We fix a generator l of the multiplicative group of
the field K 3 . Then GU (n , q) (resp. SU (n , q)) will denote the general
(resp. special) unitary group of degree n , that is GU (n , q) 4 ]g�
� GL (n , q 2 )Ng(g ! )s41( where s4f m �Aut (GL (n , q 2 ) ), and
SU (n , q) 4 ]g� GU (n , q)Ndet (g) 41(. All other notations, unless
otherwise specified, are as in the previous section.

We may assume that C is non-cyclic, otherwise we conclude by propo-
sition 1.

Let C4 af r N1 , U1 b, with U1 , N1 �PGU (n , q). We argue as in case B
II of the special linear group.

We have that U is GL (n , q 2 )-conjugate to a block-diagonal matrix X
whose blocks Xi have all the same dimension k and are of the form (1),
where ci 4ce i , e i

d 41 and we may also assume that c1 4c .
By [10, p. 34] the matrix X as above is conjugate to an element of

GU (n , q) if and only if it is similar to the matrix ((X ! )s )21 .
So ce i 4 (ce j )2q , for some j , which implies that c q11 4 (e i e j

q )21 and
c (q11)2

41. Let c4l u . We have that q 2 21Nu(q11)2 , so q21Nu(q11).

As (q11, q21)G2, it follows that
q21

2
Nu and there are at most 2(q11)

choices for c . Moreover, again by [10, p. 34] two matrices are conjugate
in GU (n , q) if and only if they are conjugate in GL (n , q 2 ), so it
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is enough to count the number of choices for the matrix X as above,
and then to multiply by d4NPGU (n , q) : PSU (n , q)N .

As in case B II of the special linear group, the choices for X are at
most

d n21 1 !
1 EkNd

2(q11)d
n

k
21

.(3)

Note that d n21 1 !
1 EkNd

2(q11)d
n

k
21

G2(q11)
d n21 21

d21
.

To bound the number of choices for the second generator, we look for
an upper bound for the order of the centralizer Z of U in PGU (n , q). We
may assume that U has prime order u .

We first assume that (n , q) � ](3 , 2 ), (3 , 5 ), (4 , 3 ), (8 , 3 )(.
Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5.1 of

[4] for u42 and some easy calculations it is possible to see that an upper
bound for the order of Z is NGU (n21, q)N .

So we have to prove that 2d(q11)
d n21 21

d21
NGU (n21, q)NE

ENPSU (n , q)N .

As
d

d21
G2, this is true because 4(q11)2 d n E (q n 21)q n21 .

If (n , q) 4 (8 , 3 ) we use the more accurate bound (3) and the fact
that NZNGNGU (n21, q)N .

We now study the remaining cases.
I: Case (n , q) 4 (3 , 2 ), d43 is divided into 2 subcases according as U

is diagonalizable or not. For each case, we have to consider the possible
canonical forms for U and the order of their centralizers, and the result
follows just by counting the possible choices.

II: Case (n , q) 4 (3 , 5 ), d43.
There are at most 15 possibilities for the choice of X and 15 Q

Q3NGU (2, 5 )NENPSU (3, 5 )N .
III: Case (n , q) 4 (4 , 3 ), d44 is divided into 2 subcases according as

NUN is equal to 2 or 4 . For each case, we have to consider the possible ca-
nonical forms for U and the order of their centralizers, and the result
follows just by counting the possible choices.

4. Bl (q), Cl (q) and E7 (q).

Let G� ]Bl (q), Cl (q), E7 (q)(. We have that C is isomorphic to a sub-
group C of Z2 3Zm , with Zm 4 afGb and Out Diag (G) GZ2 .
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Then either C is cyclic, and we may apply proposition 1.3, or it is 2-ge-
nerated, and it is possible to choose one generator of the form f r z, with
z�G and (f r z)

m

r 41, so proposition 1.5 applies.

5. Dl (q), lc4.

Case p42

In this case we have that C is isomorphic to a subgroup C of Z2 3Zm ,
with Zm 4 afGb and Out Diag (G) G4Z2 , and we argue as for the case
G4Bl (q) or Cl (q).

Case pc2

We have that C and its image C in Out (G) are isomorphic to a sub-
group of D8 J Zm , with the following notation: Zm 4 afGb and
Out Diag (G) GGD8 . More precisely, if l is odd and 4Nq21 or if l is even
then Out Diag (G) G4D8 4 awG , tGb, where t is the graph automorphi-
sm of order 2 , w 4wG has order 4 , wt4 w21 , [t , f] 41, and wf4 w
unless l is odd and 4 =p21, in which case wf4 w21 .

If l is odd and 4 =q21 then Out Diag (G) G4 axG , tGb is elementary
abelian, t is the graph automorphism of order 2 , x�InnDiag (G). Also f
centralizes Out Diag (G).

Let T4COInnDiag (G) G , and let T be its image in Out G . By propo-
sition 1 we may assume that C is not cyclic, and it is easy to check that C
splits over T .

Let C GO Out Diag (G) G .

I) Assume that it is possible to choose a generator of C modulo T
of the form f r a , with a�InnDiag (G) and (f r a)

m

r 41.
If T is cyclic proposition 1.5 applies, so we may assume that T is not

cyclic.
If C 8 is another complement, by proposition 1.1 we may assume that,

up to InnDiag (G)-conjugacy, a generator of C 8 modulo C 8O
OInnDiag (G) G is (f r )x , for some x� InnDiag (G), and we have at most
NInnDiag (G) : GNG4 choices for it, up to G-conjugacy.

T is generated by two involutions u x and v x , that are of graph type or
of inner-diagonal type, depending on which case we are considering. Mo-
reover we may assume that u is of the form t e y , with y�G and e�
� ]0, 1(, and such that [t e y , f r ] 41, so y�Dl (p r ). We note that we may
conjugate t e y by elements of Dl (p r ), which centralize f r .
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From table 4.5.1 of [4] we deduce that both the number of Dl (p r )-con-
jugacy classes of involutions of graph type and the number of Dl (p r )-
conjugacy classes of involutions of inner-diagonal type are bounded by
2(l13). So there are at most 2(l13) choices for u . Then we have to
count the involutions v of a fixed type. There are at most 2(l13) conju-
gacy classes, and each class contains at most NInnDiag (G) G :
CInnDiag (G) G (g)NG8NG : CG (g)N elements, where g is any involution in the
class considered. We choose g such that the index of H4CG (g) in G is
maximum. So there are at most 2(l13)NG : HN possibilities for the choi-
ce of v . So we just have to check that 4 Q32(l13)2 NG : HNENGN , which is
true because 128(l13)2 ENHN (the structure of H is also described in
table 4.5.1 of [4]).

II) Assume that we are not in the previous case, so that C does not
contain OutDiag (G) G; in particular NTNE8. Let f r z be a generator of C

modulo T of order
m

r
, with z� InnDiag (G) G0InnDiag (G). We have that

m

r
is even, otherwise we replace f r z with (f r z)4 , which is a generator of

C modulo T of order
m

r
and of the form f r x with x�G .

If T4 aub has order 2 then we apply proposition 1. By table 4.5.1 of
[4] we have at most 2(l13) conjugacy classes of involutions of the same
type as u; moreover, by Table 5.2 A of [p. 175] [7] the index of a maximal
subroup of G is less than 2(l13), so in this case the conclusion
follows.

If T is cyclic of order 4 , from the fact that we are not in case I it follo-
ws that T 4 OutDiag (G) and we can conclude by proposition 1.6.

So we may assume that T is elementary abelian of order 4 .
If l is even then T 4 OutDiag (G) and as we are not in case I it follows

that f r z does not centralize T , so we conclude by proposition 1.6.
Let l be odd. Note that we also have that 8Nq21, because m is even.

As we are not in case I, one of the following occurs:

– z 4t and T 4 aw2 , wtb, or

– z 4 wt and T 4 aw2 , tb.

To deal with these cases we always adopt the same strategy. We first
count the number of choices for a generator of TOInnDiag (G), then we
count the number of choices for a generator of T modulo TO
OInnDiag (G), and finally we count the number of choices for a generator
of C modulo T .
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We describe the calculations in detail only for the first case.
Let C 8 be another complement of of G in H; then we may assume that

it is of the form C 84 af r tu , w 2 v , wtxb, with u , v , x�G .
By Table 4.5.1 of [4] we have at most l21 choices for w 2 v , up to G-

conjugacy. Moreover let C *4CInnDiag (G) (w 2 v) and L *4O p (C *). From
table 4.5.1 of [4] it follows that

i) either L *42 Dl21 (q) and Z4CC * (L *) 4CInnDiag (G) G k
(L *) has

order q11 or

ii) L *4Di (q)3Dl2 i (q) or L *42 Di (q)32Dl21 (q), where 2 G iE

E
l

2
and Z4CC * (L *) 4CInnDiag (G) G k

(L *) has order 2 .

We first deal with case ii). Note that wtx centralizes w 2 v , so it nor-
malizes L *. Let (y1 , y2 ) �Aut (eDi (q) )3Aut (eDl2 i (q) ) be the image of
wtx in Aut (L *). The number of choices for wtx , up to G-conjugacy, is
bounded by NZNr1 r2 , where r1 21 is the number of eDi (q)-conjugacy
classes of involutions in InnDiag (e Di (q) ) G (we have to add one because
y1 might be the identity) and r2 21 is the number of e Dl2 i (q)-conjugacy
classes of involutions in InnDiag (eDl2 i (q) ) G . Again by table 4.5.1 of [4]
we have that r1 , r2 G6 l125.

Note: For i42, 3 it is easy to check that r1 , r2 G6 l125 is still true
(see [p. 11] [4] and [p. 43] [7] for the description of Di in these
cases).

So there are at most 2(6 l125)2 choices for wtx .
We now have to choose f r tu . Note that once we have fixed f r tu with

the required properties, any other element of the form f r tu 8 is such
that (f r tu)21 f r tu 8�CG (w 2 v), so we have at most NCG (w 2 v)N choices
for the third generator.

A similar argument applies to case i).
To conclude, we have that the number of complements for G in H is at

most (l21) 2(6 l125)2 NUN , where U is a maximal subgroup of G , and
this number is less than NGN , as by Table 5.2 A of [p.175] [7] the index of

a maximal subgroup of G is at least
(q l 21)(q l21 11)

q21
and 2(l21)(6 l1

125)2 E
(q l 21)(q l21 11)

q21
(here lF5 and qF9).

Let C G OutDiag (G) G .
Then C is generated by two involutions u and v , that are of graph

type or of inner-diagonal type, depending on which case we are conside-
ring, and we argue as in Case I above.
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6. D4 (q).

In this case we have that OutDiag (G) 41 if p42, otherwise
OutDiag (G) 4 azb3 awb is elementary abelian of order 4 and it is centra-
lized by f . Also, G4 at , gb is isomorphic to S3 with NtN42, NgN43, wt4

4 wz, zt4 z, while (InnDiag (G) G) /G is isomorphic to S4 and is centralized
by f .

Let T4COInnDiag (G) G , and let T be its image in Out G . By propo-
sition 1.3 we may assume that C is not cyclic, and it is easy to check that
C splits over T .

Case: CGO InnDiag (G) G

I) Assume that it is possible to choose a generator f r u of C mo-

dulo T of order
m

r
and with u� InnDiag (G).

If T is cyclic we conclude by proposition 1.5, so we may assume that T
is not cyclic.

Assume that p is odd. By proposition 1.1 we have at most 4 possibili-
ties for the choice of f r u , up to G-conjugacy, and we may assume that it
is of the form (f r )x for some x� InnDiag (G).

We may also assume that one generator of T is an involution y x such
that y centralizes f r . As we may conjugate y x by elements of the form
w x �G , where w centralizes f r , the choices for y are bounded by the
number of G-conjugacy classes of non-inner involutions of fixed type in
InnDiag (D4 (p r ) ) G , which by table 4.5.1 of [4] is at most 24 . The second
generator of T is an element of InnDiag (D4 (p r ) ) G and we have that
96NInnDiag (D4 (p r ) ) GNENGN , as we wanted.

If p42 then by proposition 1.1 we have at most one possibility for the
choice of f r u , up to conjugacy; we therefore take x41. Moreover, T is
generated by a graph automorphism y of order 3 , and a graph type invo-
lution v , which both centralize f r . Arguing as above and using table
4.7.3A of [4] we find that there are at most 16NInnDiag (D4 (2r ) ) GNE

ENGN choices, as we wanted.

II) Assume that we are not in the previous case and let f r a be a

generator of C modulo T of order
m

r
with a� InnDiag (G) G ,

a� InnDiag (G).
If T is cyclic, as we are not in case I it is easy to see that T has order 2

or 3 .
If T4 ayb has order 3 then y is of graph type. We now apply proposi-
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tion 1.7. By table 4.7.3A of [4] if pc3 and by proposition 4.9.2 (b5) and
(g) of [4] if p43 we have at most 16 G-conjugacy classes of type graph
elements of order 3 . Moreover, by Table 5.2 A of [p. 175] [7] the index of
a maximal sbgroup of G is at least

(q l 21)(q l21 11)

q21
D16, so we have what

we wanted.

If T has order 2 we argue as follows. By proposition 1.1 we have at
most 4 possibilities for the choice of the first generator, up to G-conjuga-
cy. Once we have fixed the first generator, say f r au , the second genera-
tor b has the property that [f r au , b] 41. Thus the possible choices for
the second generator are given by elements of the type bv , with v�G ,
such that [f r au , bv] 41, so that v�CG (f r au). It follows that we have at
most 4NCG (f r au)NENGN choices, as we wanted (note that CG (f r au) is a
proper subgroup of G , so that its index is greater than 4).

Now we may assume that T is not cyclic. As we are not in case I it fol-
lows that OutDiag (G) G T and that T4 ay , y f r a b for some y in T , where
y has order 2 or 3 , so that C4 af r a , yb. Now proposition 1.6 allows us to
conclude.

Case: CG InnDiag (G) G

We first assume that p42. Then C4 ax , yb `G, where x and y are
both of graph type, NxN43, NyN42 and x y 4x 21 . By table 4.7.3A of [4]
there are at most 4 G-conjugacy classes of type graph elements of order
3 . By proposition 1.7 there are at most 4NZN conjugacy classes of comple-
ments for G in H , where Z is a maximal subgroup of G . To conclude, we
note that by Table 5.2A of [p. 175] [7] we have that 4 ENG : ZN .

We now assume that p is odd.

I) If C` OutDiag (G) G then C is isomorphic to either S4 or S3 and
it is generated by 2 elements x and y of graph type, with NxN43 and
NyN42.

By table 4.7.3A of [4] if pc3 and by proposition 4.9.2 (b5) and (g) of
[4] if p43 there are at most 16 G-conjugacy classes of type graph ele-
ments of order 3 . Also, there are at most 6 InnDiag (G)-conjugacy clas-
ses of involutions of graph type, and if g is a graph type involution such
that H4CInnDiag (G) (g) has minimum order, there are at most
6NInnDiag (G) : HNG24NG : GOHN choices for y . As NHOGND16 Q24,
it follows tht 16 Q24NG : GOHNENGN . (The structure of GOH is given
in table 4.5.1 of [4].)
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II) In the remaining cases, we have that C4 ax , yb where NxN42,
x� InnDiag (G)0G and NyN� ]2, 3( and the type of y is known (either
y� InnDiag (G)0G or y is of graph type). Arguing as in case I, by tables
4.5.1 and 4.7.3A and proposition 4.9.2 of [4], there are at most 6 choices
for x , up to G-conjugacy, and at most 24NG : GOHN choices for y , where
H4CInnDiag (G) (g) for some g such that g has the same order and type of
y . As NHOGND6 Q24, it follows that 6 Q24NG : GOHNENGN . (The
structure of GOH is given in table 4.5.1 of [4].)

7. 2 Dl (q).

If p42 we have that C is cyclic, so we may assume that p is
odd.

Cases: l even or l odd and 4 =q11

We have that C is isomorphic to a subgroup C of Z2 3Z2m , with Z2 4

4 aaGb and Z2m 4 afb, where a� InnDiag (G).
We have that C4 ay , f r ub where y� InnDiag (G)0Inn (G) has order

2 and is centralized by f r u , so we may apply proposition 1.7. By Table
4.5.1 of [4] there are at most l21 conjugacy classes of non-inner inner-
diagonal involutions, and by Table 5.2A of [p. 175] [7], the index of a ma-
ximal subgroup of G is bigger than l21. This allows us to conclude.

l odd, 4Nq11

In this case 4Np11 and m is odd. We have that C is isomorphic to a
subgroup of Z4 J Z2m , with Z4 4 aaGb and Z2m 4 afb, where a�
� InnDiag (G). Moreover (aG)f4 (aG)21 .

If COInnDiag (G) has order 2 we argue exactly as in the previous
case.

So we may assume that COInnDiag (G) has order 4 , and that any
other complement C 8 is of the form C 84 ax , f r yb, where x�
� InnDiag (G) has order 4 , x 2 � InnDiag (G)0Inn (G) and x f r y4

4x (21)r
.

We argue in a similar way as for a subcase of Dl (q).

By Table 4.5.1 of [4] we have at most
l11

2
choices for x 2 , up to G-con-

jugacy. Moreover let C *4CInnDiag (G) (x 2 ) and L *4O p (C *). From table
4.5.1 of [4] it follows that L * is one of the following:
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i) L *42 Dl21 (q) and Z4CC * (L *) 4CInnDiag (G) (L *) has order
q21;

ii) L *42 Di (q)3Dl2 i (q), where i is even, i� ]2, R , l23(, and
Z4CC * (L *) 4CInnDiag (G) (L *) has order 2;

iii) L *4 SU (l , q), C *4 GU (l , q) and Z4CC * (L *) 4

4CInnDiag (G) (L *) has order q11.

We note that the case L *42 Di (q)3Dl2 i (q), where i is odd occurs
only if x 2 is inner, which is not our case. To see this, note that G`

`PV2 (2 l , q), and we may assume that the matrix associated to the sym-
metric bilinear form is the identity. We then have that in this case x 2 is
the image in PV2 (2 l , q) of the matrix diag(21, R , 21, 1 , R , 1 ),
where the number of entries equal to 21 is 2 i , and then by proposition
2.5.13 of [7] x 2 is inner.

We first deal with case ii). Note that x centralizes x 2 , so it normalizes
L *. Let (y1 , y2 ) �Aut (2 Di (q) )3Aut (Dl2 i (q) ) be the image of x in
Aut (L *). We note that (y1 , y2 ) has order 2 , so the number of choices for
x , up to G-conjugacy, is bounded by NZNr1 r2 , where r1 21 is the number
of 2 Di (q)-conjugacy classes of involutions in InnDiag (2 Di (q) ) G (we have
to add one because y1 might be the identity) and r2 21 is the number of
Dl2 i (q)-conjugacy classes of involutions in InnDiag (Dl2 i (q) ) G . Again
by table 4.5.1 of [4] we have that r1 G3 i11, r2 G3(l2 i)19.

Note: it is easy to check that for i4 l23 it is still true that r2 G3(l2
2i)19, and the same holds for i42 and r1 G3 i11 (see [p. 11] [4] and
[p. 43] [7] for the description of Di in these cases).

As the maximum of the function f(z) 4 (3z11)(3 l23z19) is
9

4
l 2 1

115 l125, once we have fixed x 2 in case ii) there are at most
9

2
l 2 130 l1

150 choices for x .
A similar argument applies to case i), and we get at most 4(3 l16) E

E
9

2
l 2 130 l150 choices for x .

We are left with case iii). In this case x is a unitary matrix of order 4 .
Arguing as in section 3, as l is odd we have that x is conjugate in
GU (l , q) to a diagonal matrix whose entries on the diagonal are of the
form e i , where e is a primitive 4-th root of 1 . Moreover, if GF(q 2 )34 alb,
we have that diag (l q21 , 1 , R , 1 ) is a unitary matrix centralizing x , so
that the number of SU (l , q) conjugacy classes for x is at most
4l 22l .
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Now we apply proposition 1.7. By table 5.2 A of [p. 175] [7] the index

of a maximal subgroup of G is at least
(q l 11)(q l21 21)

q21
, which is greater

than
l11

2
max { 9

2
l 2 130 l150, 2l (2l 21)} .

8. E6 (q).

We have that C is isomorphic to a subgroup C of Out (G) GS3 J Zm ,
with Zm 4 afGb, S3 4 aaG , tGb, NaGN43, NtN42, (aG)tG 4 (aG)21 ,
OutDiag (G) G aaGb and G(G) 4 atb. Also, f centralizes t and either in-
verts or centralizes aG .

By proposition 1.3 we may assume that C is not cyclic.
Let C GO Out Diag (G) G , T4COInnDiag (G) G .

I) Assume that it is possible to choose a generator f r x of C modu-

lo T of order
m

r
and with x� InnDiag (G).

By proposition 1.1 we have at most 3 possibilities for the choice of
f r x , up to conjugacy. Moreover, by proposition 1.5 we may assume that
T 4 OutDiag (G) ) G .

We have that T is generated by a graph-type involution u centrali-
zing a suitable conjugate of f r and an element v� InnDiag (G)0Inn (G)
of order 3 . We now argue as in the analogue of this case for Dl (q).

By Table 4.5.1 and proposition 4.9.2 (b)(4) and (f) of [4] there are
at most 2 choices for u , up to G-conjugacy. By table 4.7.3A of [4] there
are at most 8 G-conjugacy classes of elements of order 3
in InnDiag (G)0Inn (G), and each of them has at most
NInnDiag (G) : CInnDiag (G) (g)N elements, where g is an element of one of
those classes such that CG (g) has minimum order. To conclude, it is enou-
gh to note that NCG (g)ND48.

II) It is easy to see that if we are not in the previous case then it is

possible to choose a generator f r z of C modulo T of order
m

r
and with

z� InnDiag (G) G . Moreover, T is cyclic of order 3 , so proposition 1.7 ap-
plies. By Table 4.7.3A of [4] the number of G-conjugacy classes of ele-
ments of order 3 in InnDiag (G)0Inn (G) is at most 8 , which is less than
the index of a maximal subgroup of G .

Let CG InnDiag (G) G .
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We have that C is generated by a graph-type involution u and an element
v� InnDiag (G)0Inn (G) of order 3 and we argue as in case I.

9. 2E6 (q).

We have that C is isomorphic to a subgroup C of Out (G) GZ3 J Zm ,
with Zm 4 afGb and Z3 4 aaG , tGb and a� InnDiag (G).

By proposition 1.3 we may assume that C is not cyclic, so that C4

4 ay , f r zb, where z� InnDiag (G); also y� InnDiag (G)0Inn (G) has order
3 and it is normalized by f r z .

By table 4.7.3A of [4] there are at most 8 G-conjugacy classes of type
graph elements of order 3 . By proposition 1.7 there are at most 8NZN

conjugacy classes of complements for G in H , where Z is a maximal sub-
group of G . To conclude, we note that by Table 5.2A of [p. 175] [7] we ha-
ve that 8 ENG : ZN .
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