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Complements of the Socle in Almost Simple Groups.

A. LuccHINI (*) - F. MENEGAZZO (¥*) - M. MORIGI (**%*)

Assume that a finite group H has a unique minimal normal subgroup,
say N, and that N has a complement in H. We want to bound the number
of conjugacy classes of complements of N in H; in particular we are loo-
king for a bound which depends on the order of N. When N = soc H is
abelian, the conjugacy classes of complements of N in H are in bijective
correspondence with the elements of the first cohomology group
H'(H/N, N). Using the classification of finite simple groups, Aschbacher
and Guralnick [1] proved that |H1(H/N , N)| <|N|; therefore, when
soc H = N is abelian, there are at most | N| conjugacy classes of comple-
ments of N in H. To study the case when N = soc H is nonabelian we can
employ a result proved by Gross and Kovacs ([6], Theorem 1): there
exists a finite group K containing a (non necessarily unique) minimal
normal subgroup S which is simple and nonabelian (indeed S is isomor-
phic to a composition factor of N) and there is a correspondence between
conjugacy classes of complements of N in H and conjugacy classes of
complements of S in K. Using this result it is not difficult to prove that
there exists an absolute constant ¢ < 4 such that the number of conjuga-
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cy classes of complements of N in H is at most | N|° (see, for example, [9]
Lemma 2.8). We conjecture that one can take ¢ = 1, as occurs when N is
abelian.

In this paper we deal with this conjecture in the case of finite almost
simple groups. Let G be a finite simple group. As G = Inn (&), we may
identify G with Inn(G). We will prove the following

THEOREM. Let G be a finite non-abelian simple group and assume
that H < Aut(G) contains G. Then the nwmber of conjugacy classes of
complements of G in H s less than |G|.

When G = Alt (r) with n # 6 or G is a sporadic simple group, it is well
known that |H : G| <2;if H # G, then the complements of G in H are in
bijective correspondence with the involutions of H which are not contai-
ned in G; hence the number of complements for G in H is strictly smaller
than |G|. The case G = Alt(6) = PSL (2, 9) is dealt with as a group of
Lie type.

We may now assume that G is a finite simple group of Lie type over a
field K = GF(p™) of order p™, for some prime p. We will follow the defi-
nitions and notations of the book [4], unless otherwise stated. So G will
be a group of the form G = X ;(q) where [ is the Lie rank of G and ¢ = p™,
for some prime p.

Also, ¢ denotes the Frobenius map and I" denotes the group of graph
automorphisms of G.

If G has no complement in Aut (G) there is nothing to prove, so we
may assume that there exists C<H such that H=GC and GNC=1.

Then we have that C is isomorphic to a subgroup of Out(G), whose
structure is well known. In particular, C is at most 3-generated. Also, if
x, Y, #z are generators of C and C' is any other complement for G in H,
then C' is generated by three elements of the form wxu,, yu,, zu; sati-
sfying the same relations as «, y, z and with u;e G, for 1 =1, 2, 3.

In the whole paper, C will be a fixed complement for G in H.

1. Preliminary results.

We collect in this section some results which will be very useful in the
sequel. The first is actually a corollary of Lang’s theorem, in the general
form proved by Steinberg.
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ProposITION 1.1. Let G be an untwisted finite simple group of Lie
type over the field K with p™ elements. Let ¢"a e Aut(G), with ae
e InnDiag (G)I', and assume that |¢"a| = m/r. If x € InnDiag (G) is such
that |@"ax| =m/r then ¢"a and ¢"ax are InnDiag (G)-conjugate.

ProOOF. Let G =X,(p™) and let G be the connected algebraic group
over the algebraic closure K of K such that G is adjoint and G =
=07 (Cz(¢p™)) (see [4, Theorem 2.2.6 (e)]). By Lemma 2.5.8. (a) of [4] we
have that InnDiag (G) = Cg(¢p™).

Let 7, be the inner automorphism of G induced by x. There exists
@ € Aut (G) such that @ is the product of a graph automorphism and an
inner automorphism, and @ induces a on G. We note that (¢p"a)"" =
=(¢"ar,)""=¢™. So ¢"a is a surjective homomorphism v of G whose
set of fixed points in G is finite. By the Lang-Steinberg theorem
(see [Theorem 2.1.1] [4]) there exists w e G such that x ~'=w 'w? .

Let s=-2. We have that: P = (T, =yl T, =
r

=¢”’r§fklrf?2...r’£rm ) 15371r$372...r$r40= 1. As =@ H)"w we
obtain that (75')"7;=1, so 72" = 7, that is e InnDiag (G).

It follows that (P a)’=w "9 aw =@ " a(w ) W=
=¢"a ‘W ") =¢"ax, as we wanted to prove.

We will also need a lemma proved in [8].

LEMMA 1.2. Let G be a finite simple group of Lie type, and let a e
e Aut (G) then there exists ge G such that |a| # |ag].

Our first results are easy consequences of the proposition and lemma
above.

ProrosiTION 1.3. Let G be a finite simple group of Lie type, G <
< H < Aut (G) and assume that a complement C for G in H is cyclic. Then
the nmumber of complements for G in H is less than |G|.

Proor. If C = (a), then any other complement C’ is generated by an
element of the form ag, with geG and |ag| = |a|, and lemma 1.2
applies.

COROLLARY 1.4. Let G be a finite simple group of one of the follo-
wing types: 2D,(q), G2(q), F1(q), Es(q), 2F,(q) or 2G5(q) and let G < H <
< Aut(@). Then the number of complements for G in H 1is less than
|G
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ProoF. By Theorem 2.5.12 of [4] the groups listed above have cyclic
outer automorphism group, so proposition 1.3 applies.

ProOPOSITION 1.5. Let G be an untwisted finite stmple group of Lie
type over the field K. Assume that C = {(¢"a, b), with a e InnDiag (G),
beInnDiag (G)I'\Inn(G) and |¢p"a| = |¢"|. Then the number of G-
conjugacy classes of complements for G in H s less than |G|.

Proor. If C’ is another complement for G in H, then the first gene-
rator of C' is of the form ¢"ag, with ge G and |¢"ag| = |¢p"a| = |¢"|,
so by proposition 1.1 we have at most d = |InnDiag (G): G| choices for it,
up to G-conjugation. Moreover, again by proposition 1.1, we may assume
that ¢p"ag = (¢")" for some x e InnDiag (G). So C' ={(¢", (bv)fl}’”, for
some v € G. We now need to count the choices for the second generator,
which is of the form (yu)* , where y = b* and v =«“ . By lemma 1.2 we
have less than |G| choices for u, as |yu| = |y|. Moreover, as we are
counting G-conjugacy classes of complements, we may count the ele-
ments of the form yu up to conjugation by elements of the centralizer of
¢"in G. If G =2,(q) then X;(p) < Cgz(¢p"). We have that [yu, Z;(p)] #1
(see [Lemma 2.5.7] [4]), so that Cs,,)(yu) is a proper subroup of X;(p).
As the index of a maximal subgroup of X ;(p) is at least d (see Table 5.2 A
of [p. 175] [7]) each orbit of the set {yu|u e G} under the action of X,;(p)
by conjugation has at least d elements. This concludes the proof.

ProposITION 1.6. Let G be an untwisted finite simple group of Lie
type over the field K. Assume that C={(¢"a,b), with a,be
€ InnDiag (G)I', InnDiag (G) < Hand |¢"a| = |¢"|. Then the number of
G-conjugacy classes of complements for G in H is less than |G|.

Proor. If C' is another complement, by proposition 1.1 we may as-
sume that the first generator of C’ is (¢"a)”, for some « € InnDiag (G).
Let C' = {(¢"a)", bu), where w e G. As InnDiag (G) < H = GC' we have
that x = 2y for some z € G and some y e C', so that C' = {(¢"a ), (bu)Wl}
is G-conjugate to a complement of the form C" = (¢"a, v). It follows that
the first generator of C' is uniquely determined, up to G-conjugation. By
lemma 1.2 the number of choices for the second generator of C'' are less
than |G|, and the conclusion follows.

We recall that if a € H, then a is of one of the following types: inner,
inner-diagonal, graph, field or graph-field (see [4], definition 2.5.13).
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PropoSITION 1.7.  Let G be a finite simple group of Lie type over the
field K. Assume that C = {a, b), where the type of a is known and b nor-
malizes (a). Then the number of conjugacy classes of complements for G
i H is bounded by rs, where v is the number of G-conjugacy classes of
elements of H of the same type and order as a and s is the order of a ma-
ximal subgroup of G.

Proor. If C' is another complement for G in H, we have that C' =
= (au, bv), for some u, ve G, where |au| = |a|, |bv| = |b| andifa’=a’
for some integer ¢, then (au)® = (au)’. There are at most 7 choices for
au, up to G-conjugacy. Moreover, any two elements bv’ and bv” such
that (au)” = (au)™" = (au)’ satisfy (bv')'bv" e Cgz(au), so there are at
most |Cg(au)| choices for the second generator, and the conclusion
follows.

2. The special linear groups.

Let K be the finite field with ¢ elements, with ¢ = p”™ for some prime
number p. As usual GL(n, q) (resp. SL(n, q)) will denote the general
(resp. special) linear group of degree n over the field K. In the following
we will identify the multiplicative group K * of K with the subgroup of
GL(n, q) consisting of scalar matrices. Then PGL(n,q)=
=GL(n, q)/K*, PSL(n, q) =SL(n, ¢) K*/K* and if ge GL (n, q) its
image in PGL (n, ¢q) will be denoted with g. Also, as usual, det (¢) will in-
dicate the determinant of a matrix g and diag(a,, ..., a,) will denote a
diagonal matrix, whose entries on the diagonal are those listed between
the brackets.

In the whole section, we will consider G = A4, _,(q) = PSL (n, q), for
n and ¢ fixed. Let ¢ be the Frobenius automorphism of GL (%, ¢), given
by: (a;)? = (a}), for i,j=1,..., n.

Let 7: GL(n, ¢) = GL (n, q) be the automorphism defined by ¢’ =
= (g "), where g7 denotes the transposed matrix of g.

Both ¢ and 7 induce automorphisms of PGL (%, q), which we will still
indicate by ¢ and t. ¢ generates the group of field automorphisms, 7 is a
graph automorphism if » = 3, and it is an inner automorphism if » = 2.
Also, PGL (%, q)/G is cyclic of order d = (n, ¢ —1).

We have that C is isomorphic to a subgroup of Out(G) =
={(¢G, 1G, aG), where a e PGL (n, q), (aG)*® =a?G, (aG)*=0a "G,
[¢G, 1G] =1 and |aG| =d, |¢pG| =m, |G| =2.
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Case A: C is 3-generated

In this case C has the group Z, X Z, X Z, as an epimorphic image and
d is even, so that p is odd and n =4 is even.

We may assume that C=(¢"N,, tM,, U,), where M,, N, U; e
e GL (n, q) and r|m. Also we have that U, has order d ', with 2 |d" |dand
we also have that (¢ "Ny)"" e (U,).

LEMMA 2.1. In the above setting, we wmay also assume that
[¢p"Ny, tM,]1 =1 and tM, has order 2.

Proor. As Cis isomorphie to a subgroup of Out (), it will be isomor-
phic to a subgroup T of the group X =(a, b, cla®=b%*=c¢"=1, a’=
=a"',a*=a”,b’=b)where pis aprime and p™ = 1 modd. Since 7'is not
2-generated, TN (a, b) and T{(a)/a) are not cyclic; in particular m is
even. Set (a')=TnN(a). If beT, easy calculations prove that T =
=(a', b, ¢*) where both a' and c* have even order. Assume that b ¢ T and

ba e T. Note that Cx(ba) = (a”?, ba, u) where u = ca 3. Similar com-
putations prove that T = (a', ba, u*), where [ is even, and the orders of
a' and of u*(a) are even. As any subgroup of X which is not 2-generated
is (a)-conjugate to a subgroup containing either b or ba, the result
follows.

OBSERVATION. With the notation of lemma 2.1 we note that it is pos-
sible that 7' does not split over 7N {(a, b). Namely, T = {(a', ba, u*) is
not 2-generated and does not split over 7' N {(a, b) iff p =2, [, d, m/k are

P m_ 1

even, is odd, the order of a'is divisible by 4, and finally 7, <

<max ((p*—1)s,(p*+1),) where we denote by x, the 2-part of the
integer x. Also, if T' does not split over 7N (a, b) we have that «™ has
order 2.

Cask I: (¢p"Ny)"r=1

We may assume that another complement C’ for G in H is generated
by ¢"N,X, tM, U, with X e G, M, U € PGL (n, q), satisfying the same
relations as ¢"N;, tM,, U;. In particular (¢"N;X)"" =1, so by pro-
position 1.1 there are at most d possibilities for the choice of ¢"N,X,
up to conjugation by elements of G. Moreover, again by proposition
1.1, we have that ¢"N,X = (¢")°, with S e PGL (%, ¢). Changing no-
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tations for the last two generators, we may now assume that C’ = ((p™)3,
@IS, (OF).

We now have to count how many possibilities there are for the other
two generators. From the fact that M has order 2 it follows that
MM=1,s0 M" =aM, with aeK and as (M 7)" =M we have that
a?=1, so that M is symmetric or skew-symmetric.

From the fact that [¢", tM] =1 it follows that M* = M, with e
e K *. This implies that mé?r* 1= Bforeachi,j=1,..., nsuch that My =
# 0. Choose &, k such that m;,;, # 0. Thus, for each 7, j =1, ..., n we have
that m;; myl e GF (p”), that is my; = My, my; for some m;; e GF(p"). It fol-
lows that M =my,; M ', with M' € GL (n, p"). Choosing M ' instead of M
as a pre-image of M we may assume that M e GL (n, p").

As we are counting conjugacy classes of complements, we note that to
count the possibilities for the second generator of C' we are still free to
conjugate it by an element H of G centralizing ¢, that is H e SL (n, p").
Note that in that case we have that (tM)7 = tH" MH, and by [3] there
exists H e GL(n, p") such that H " MH has one of the following forms:
identity, diag(a, 1,...,1), where @ is a non-square in GF (p"), or a
block-diagonal matrix whose blocks on the diagonal are all equal to

0 1
(—1 0)'

As we are allowed to conjugate by matrices in PSL (n, ¢) and not in
PGL (7, q), we have at most 3d possibilities for M.

We now count the number of choices for U. We have that (U)’M =
=), 50U ™ = yU,with y? = 1, and we have at most ¢ * V2 possibili-
ties for U for each choice of y. So we have at most 2¢""* Y2 /(q — 1) pos-
6d3 qn(n+ 1)/2

(g—-1)
as 6¢" 1< (¢g>—1)g"—1) for n=4 and ¢=9.

sibilities for U, and thus at most < |G| possibilities for C’,

Cast II: (¢"N,)"™" =1

In this case — is even. Actually, if 2 s odd, putting x=17M,,
r r
y=¢"Ny, if m=2's, with = |s, then C = (x, y%, y*, U) = (xy?, T), as
/s

y*e(y™ ) e(U). So C is 2-generated, contradicting the assumptions.
Again, we may assume that another complement C'' is generated by
¢"N, M, U, satisfying the same relations as "Ny, tM;, U;. In particu-
lar (tM)* = 1. As in Case I, it follows that M is symmetric or skew-sym-
metric, and conjugating by a suitable element of PSL (n, q) we have at
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most 3d possibilities for M. Namely, we may assume that M is of one of
the following types:

i) 7%,
ii) (171)3, with A=diag(a, 1, ..., 1), where a is a non-square in K,
iii) (rTE)g, where B is a block-diagonal matrix whose blocks on the

diagonal are all equal to (_0 1 (1))

Changing notations for the generators, we may assume that C' =
={(¢p"N)®, (xM)’, (U)%), with M e {I, A, B}. Also, there is no loss in gene-
rality in assuming S =1, as this does not affect calculations.

We now consider the generator ¢"N. Let u = det (N) and (¢ N)"/" =
=L.

In cases i) and iii) we have that [tM, ¢"N] = [tM,N] =1, so that
N =N. It follows that (N "1)™ = yN, with y e K*, and u?e K" (here
K™ is the set of elements of K which are n-th powers).

(p r)m/»

As Zis even and p is odd it follows that 2| , So that
r (p )7)l7‘

det(L)=u »-t eK", which implies that (¢" N)m/“I;C NG=1 and
(9" N, )’”/’” (p"N)y"™r —1 a contradiction.

We now deal with case ii). From [(tA),(¢"N)] =1 it follows that
N'A=A4N,so N T = A"’NA ! wﬁ;hyeKX and u?=qa' Py ",

» )m/r
As before, det(L) =u 7 =a" " )37 = 1 modulo K",
that T2 = 1 (note that 1=
lemma 2.1).
We distinguish two subcases:

1 is odd, as it is stated in the observation after

a) r< % . We first bound the choices for the generator of the form

¢"N. By [p. 52] [5] "B and ¢"C are conjugate in GL (n, q) if and only if
(¢"B)"" and (¢"C)™" have the same property, so we need to count
PGL (n, q)-conjugacy classes of involutions (p"N)"" e
e PGL (n, ¢)\PSL (%, ¢). By Table 4.5.1 of [4] there are at most 7/2 choi-

ces for (¢"N)"™", which means at most g PGL (n, q)-conjugacy classes

of elements of the form ¢"N, that is at most d— choices for ¢"N, up to
PSL (n, q)-conjugation.

Now once we have chosen an element 7V as a second generator, from
the fact that (¢"N)"V = ¢"N it follows that all the other possible choices
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for the second generator are of the form VU, where U e Cy;(¢p"N).

Let K the algebraic closure of K. By the Lang-Steinberg theorem [p.
32] [2] we have that ¢"N is conjugate to ¢” in PGL(n, K), so
| Chsron. (@ "N) | = | PGL (n, p”)|. So we have at most | PGL (n, p") |
choices for V.

By our hypothesis, there exists & such that (zV)% ' is of the form 74,
with A =diag(a, 1, ..., 1), where a is a non-square in K.

We may assume that the third generator is of the form (D)F.

We have that TR = (DR D" = (TR, and as (TF)" = T HE, it
follows that U4 =T, that is U ™4 =yU, with ye { =1}

This means that, fixed y, U is deterrr;}gel()il by its entries along and

above the diagonal, so we have at most 2¢ 2  choices for U, and at mo-

n(n+1)

st ilq 2 choices for U.
q—

Putting all together, the number of conjugacy classes of complements

n(n+1)

for G in H is at most < dg | PGL (n, p™* | ilq 2 < |PSL(n, q)|.
q—
(Here we have used that 8|n, because m is even, so that 8 |¢ —1 and
971 s odd).
d

b) r= % . We first bound the choices for the generator of the form
¢"N.
As (¢p™2N)? =T has order 2, the canonical form of L is either a dia-

gonal matrix whose entries on the diagonal are in the set { =y}, for some
ye K™ (first type), or it is a block-diagonal matrix, whose blocks on the

diagonal are all equal to ( 1 J/), with y e K™ (second type). By [p. 50]

[5], by conjugating by a suitable element of GL(n, q¢) we may assume
that N is block-diagonal matrix, whose blocks N; on the diagonal are of
the form

r0 0 a’i,l\
I A
N,=10 1
0
o - 0 1 au)
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So we may assume that also L is a block-diagonal matrix, whose blocks L;
on the diagonal have dimension m;.

We now want to prove that the canonical form of L is diagonal.

If m; = 5 for some j it is easy to see that L; cannot have order 2. Also,
if the canonlcal form of L is of the second type then 2 | m; for each j. Now
assume that m; = 2 for some j. As L2 is a scalar matrix, L; is of the form

L;= (x y ) Moreover L; is diagonalizable if and only if x2+yzis a
-

2 m2 m/2
square. Let N;= (O 2) Then L; = (b;m/z ab —det(L;) =
a

1 b+aP
— —p?"**1is a square (note that —1 is a square) and it follows that L;is
diagonalizable.
To conclude, assume that m; = 4 for each j. We have that L; is of the
form

m2 1]

m/2 a P m/2

a/p a *
1 b p m/2 1 b - b pm/z *
1 ¢ p m/2 1 c 1 c pm/Z *
1 d P m/2 1 d 1 d pm/Z %
aPnMZ
pm/z
So the first column of sz is bpm,z , Which implies that b=c=d =0. So
c
m/2
ap dpm/z
L= 1 @l and L} = diag (a?™, a, a?"”, a).

1
As L?is a scalar matrix it follows that a”"” = a and a is the same for

all blocks L;. We have a = 2""™* 4D for some integer number u, and
detL = (CLZ)“/4 212" 41 which leads to a contradiction because

| (pm/2 + 1)
It follows that L is diagonal.
So we have at most g choices for L and thus at most g choices for

¢"*N, up to PGL (n, q)-conjugation. As we are counting PSL (7, ¢)-con-
jugacy classes we have to multiply this number by d.

We may also assume that L = (L, L) is a block diagonal matrix with
2 blocks on the diagonal of the form L, = yI, and L, = —yI,,, for some y
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in K*, where 7, + v, = n. We note that 7, and r, are both odd, otherwise
det (L) = y" contradicting the fact that L ¢ PSL(n, q). Moreover, as

8|n, we have that r = g Z 7.

We have that M, N and U centralize L, so we may assume that they
are all block-diagonal matrices, with M = (M,, M), N = (N, N,) and
U= (U,, Uy). (Note that if Z® = L then L® = aL for some ae K *, but

looking at the eigenvalues of L and keeping in mind that »; # z , it fol-
lows that o =1, that is S centralizes L). 2

By proposition 1.1, we have that ¢™2N, is conjugate to ¢ in
PGL (7;, q), and so ¢"*N is conjugate to ¢ D in PGL (n, q), with D =
= (I, BI,) for some feK*.

We now work separately on the two blocks, using exactly the same
strategy as in case I.

We may assume that M, = EM/, with £e K* and M/ € GL (ry, p"?).
Moreover M, is symmetric (note that r; is odd). By conjugating with ele-
ments of GL (71, p™?) we find that there are at most 2 choices for M/,
and at most 2(¢ — 1) choices up to SL(r;, p"?)-conjugation. So there are
at most 2(q — 1)? choices for My &. Arguing in the same way for M, and
taking images in PGL (%, ¢) we obtain that there are at most 4(q — 1)
choices for M.

The number of choices for U; is now at most ¢"i * 2 (note that the
element y appearing in case I is now forced to be 1, as r; is odd). So there
are at most q"" T D2qn D2/ q — 1) possibilities for T.

So we have at most gd4(q“’1("‘*1)/2(]"2(’"2”)/2)((] —1)*< |PSL(n, q) |

choices for C.

Case B: C is 2-generated

We may assume that C = (¢"Ny, ¢ ¢*M,), where M;, N, e GL (n, q)
and ¢ e {0, 1}. We may also assume that any other complement C' is ge-
nerated by ¢"N, t°¢*M, satisfying the same relations as
o"N,, v " M.

Case I: C % InnDiag (G)TI,(¢"N,)"" =1
In this case we apply proposition 1.5.

Casg IL: C & InnDiag(G) I',(¢p"N))"" =L, =1, n=3
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Let u = | L;|. We now want to count PSL (1, ¢)-conjugacy classes of
elements of the form ¢"N. By [p. 52] [5] ¢"A and ¢"B are conjugate if
and only if ((p’"Z)’"/T and (¢"§)WT are conjugate, so we need to bound the
number of PGL (n, q)-conjugacy classes of elements L of order u, and
then to multiply this bound by |PGL (%, q¢): PSL(n, ¢)| =d. As L"is a
scalar matrix, L is conjugate to a block-diagonal matrix X whose blocks
X; have all the same dimension k¥ and are of the form:

® X;= 1 )

where ¢; = ce; and ¢/ =1. We may also assume ¢; = c.

If k& = 1 then there are at most (¢ — 1) d" ! choices for X and thus at
most d" ! choices for L, up to PGL (n, ¢)-conjugacy.

If £>1 there are at most (¢ — l)d?f1 choices for X.

So, summing over all k’s, the choices for L are at most

@) "+ Y (g-1dT

1<k|d

n n—1_
Note that d" '+ 3 (g—1)d* '<(g-1T 1.
1<k|d d-1

We now have that L' ?"” = I.!. Once we have fixed one element M
with that property, all the others can be obtained by multiplying M by an
element of the centralizer Z of L™ ¢ in PSL (n, ¢), and we may assume
without loss of generality that L7 ¢* has prime order .

Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5.1 of [4]

for u =2 and some easy calculations it is possible to see that an upper

bound for the order of Z is | GL(n — 1, q) | . We now have to check that
n—1 _

d(q—1) dd —|GL(~1, )| < |PSL(n, q) |, which is true for n >4

- n—1

because d?(q — 1)? d

<(g"—=1)¢q" '. For n =3 we use the more

d—1
accurate bound (2).
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Casge III: C < InnDiag(G) ', n = 3.

If C is cyclic we conclude by proposition 1.3. Otherwise we first choo-
se a generator for C'' N InnDiag (G), so that the number of possibilities is
bounded by (2.6), then we argue as in case II.

CaAsE IV: n=2

If C is cyclic we conclude by proposition 1.3, otherwise we first choose
a generator for C'' N InnDiag (G), for which there is at most one possibi-
lity, by Table 4.5.1 of [4], and by lemma 1.2 there are less than |G| choi-
ces for the second generator.

3. The unitary linear groups.

In this section, we will consider the group G =%4,_,(¢) =
=PSU (n, q), for n and q fixed.

Let K = GF (¢?) be the finite field with ¢? elements, with ¢ = p™ for
some prime number p. We fix a generator 1 of the multiplicative group of
the field K *. Then GU (%, q) (resp. SU (n, q)) will denote the general
(resp. special) unitary group of degree =, that is GU(n, q) = {ge
e GL(n, ¢?) lg(g Ty = 1} where o=¢"eAut(GL(n, q%), and
SU(n, q) ={geGU(n, q)|det(g) =1}. All other notations, unless
otherwise specified, are as in the previous section.

We may assume that C is non-cyclic, otherwise we conclude by propo-
sition 1.

Let C = (¢"N,, U,), with U, N; € PGU (n, q). We argue as in case B
II of the special linear group.

We have that U is GL (n, ¢?)-conjugate to a block-diagonal matrix X
whose blocks X; have all the same dimension k¥ and are of the form (1),
where ¢; =ce;, ¢/=1 and we may also assume that ¢; =c.

By [10, p. 34] the matrix X as above is conjugate to an element of
GU (n, q) if and only if it is similar to the matrix (X 7)°)" L.

So ce; = (ce;)~, for some j, which implies that ¢?"! = (¢;¢4)"! and
¢@*’=1. Let ¢ = 1*. We have that ¢ — 1 |u(g +1)%, s0q—1|u(q+1).

As (@+1,9—1)<2, it follows that qT_l |« and there are at most 2(q+1)

choices for ¢. Moreover, again by [10, p. 34] two matrices are conjugate
in GU(n, q) if and only if they are conjugate in GL(n, ¢?), so it
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is enough to count the number of choices for the matrix X as above,
and then to multiply by d = |PGU (n, ¢): PSU (%, q)]|.

As in case B II of the special linear group, the choices for X are at
most

3) A"t S 2Aq+1)d
1<k|d

art-1
d—1

To bound the number of choices for the second generator, we look for
an upper bound for the order of the centralizer Z of U in PGU (%, q). We
may assume that U has prime order u.

We first assume that (n, q) ¢ {(3, 2),(3, 5),(4, 3),(8, 3)}.

Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for # odd and Table 4.5.1 of
[4] for # = 2 and some easy calculations it is possible to see that an upper
bound for the order of Z is |GU(n —1, ¢) |n )

d -1
So we have to prove that 2d(¢+1) ———— |GU(rn—-1,¢)| <
<|PSUM, ¢)|. d-1

Asd
d

Note that "'+ 3 2(g+1)d* '<2(g+1)
1<k|d

- <2, this is true because 4(¢ +1?d" < (¢"—1)g" .

If (n, @) = (8, 3) we use the more accurate bound (3) and the fact
that |Z| < |GU(n—1, @) |.

We now study the remaining cases.

I: Case (n, q) = (3, 2), d = 3 is divided into 2 subcases according as U
is diagonalizable or not. For each case, we have to consider the possible
canonical forms for U and the order of their centralizers, and the result
follows just by counting the possible choices.

II: Case (n, q) =(3,5), d=3.

There are at most 15 possibilities for the choice of X and 15-
3|GU(2,5)| <|PSU(, 5)]|.

II1: Case (n, q) = (4, 3), d = 4 is divided into 2 subcases according as
| U | is equal to 2 or 4. For each case, we have to consider the possible ca-
nonical forms for U and the order of their centralizers, and the result
follows just by counting the possible choices.

4. Bi(¢), Ci(q) and E7(q).

Let Ge {B;(q), Ci(q), E;:(¢)}. We have that C is isomorphic to a sub-
group C of Z, X Z,,, with Z,, = (¢G) and Out Diag (G) < Z,.



Complements of the socle etc. 155

Then either C is cyclic, and we may apply proposition 1.3, or it is 2-ge-
nerated, and it is possible to choose one generator of the form ¢ "z, with
zeG and (¢"2)" =1, so proposition 1.5 applies.

5. D(q), 1 # 4.

Case p =2

In this case we have that C is isomorphic to a subgroup C of Z, X Z,,,,
with Z,, = (¢G) and Out Diag (G) I' = Z,, and we argue as for the case
G = B;(q) or Ci(q).

Case p # 2

We have that C and its image C in Out(G) are isomorphic to a sub-
group of DgXZ,, with the following notation: Z,,=(¢G) and
Out Diag (G) I" < Dg. More precisely, if [ is odd and 4 |g — 1 or if [ is even
then OutDiag (G) I' = Dg = {wG, ©G), where 7 is the graph automorphi-
sm of order 2, w =wG has order 4, W' =w !, [7, ¢] =1, and W’ =w
unless [ is odd and 4 + p — 1, in which case w’ =w !.

Iflis odd and 4 + ¢ — 1 then Out Diag (G) I' = (G, 1G) is elementary
abelian, 7 is the graph automorphism of order 2, x € InnDiag (G). Also ¢
centralizes Out Diag (G).

Let T = C N InnDiag (G) I', and let T be its image in Out G . By propo-
sition 1 we may assume that C is not cyclie, and it is easy to check that C
splits over T'.

Let C % OutDiag(G) I'.

I) Assume that it is possible to choose a generator of C' modulo 7'
of the form ¢"a, with ¢ € InnDiag (G) and (¢"a)+ =1.

If T is cyclic proposition 1.5 applies, so we may assume that T is not
cyclie.

If C' is another complement, by proposition 1.1 we may assume that,
up to InnDiag(G)-conjugacy, a generator of C' modulo C’'N
N InnDiag (G) I'is (¢")", for some x € InnDiag (G), and we have at most
| InnDiag (G): G| <4 choices for it, up to G-conjugacy.

T is generated by two involutions «#* and v”, that are of graph type or
of inner-diagonal type, depending on which case we are considering. Mo-
reover we may assume that « is of the form t°y, with yeG and ce
e {0, 1}, and such that [y, ¢"] =1,s0y e D;(p"). We note that we may
conjugate 7°y by elements of D;(p"), which centralize ¢".
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From table 4.5.1 of [4] we deduce that both the number of D;(p")-con-
jugacy classes of involutions of graph type and the number of D;(p")-
conjugacy classes of involutions of inner-diagonal type are bounded by
2(1 +3). So there are at most 2(I + 3) choices for #. Then we have to
count the involutions v of a fixed type. There are at most 2(I + 3) conju-
gacy classes, and each class contains at most |InnDiag(G)I:
Crunpiag() r(9) | <8|G: Ci(g) | elements, where g is any involution in the
class considered. We choose ¢g such that the index of H = Cg(g) in G is
maximum. So there are at most 2(I + 3) |G : H| possibilities for the choi-
ce of v. So we just have to check that 4-32(1 + 3)* |G : H| < |G|, which is
true because 128(1 + 3)* < |H| (the structure of H is also described in
table 4.5.1 of [4]).

II) Assume that we are not in the previous case, so that C does not
contain OutDiag (G) I'; in particular |T'| <8. Let ¢ "z be a generator of C

modulo T of order - , with z € InnDiag (G) I'\ InnDiag (G). We have that
r
s even, otherwise we replace ¢z with (¢"z)?, which is a generator of

r
C modulo T of order = and of the form ¢"x with xeG.
r

If T = (u) has order 2 then we apply proposition 1. By table 4.5.1 of
[4] we have at most 2(] + 3) conjugacy classes of involutions of the same
type as u; moreover, by Table 5.2 A of [p. 175] [7] the index of a maximal
subroup of G is less than 2(l+3), so in this case the conclusion
follows.

If T is cyclic of order 4, from the fact that we are not in case I it follo-
ws that T = OutDiag (G) and we can conclude by proposition 1.6.

So we may assume that T is elementary abelian of order 4.

If I is even then T = OutDiag (G) and as we are not in case I it follows
that ¢"z does not centralize 7', so we conclude by proposition 1.6.

Let [ be odd. Note that we also have that 8 |¢ — 1, because m is even.
As we are not in case I, one of the following occurs:

- z=1 and T = (w?, wt), or
- z=wrt and T = (W?, 7).

To deal with these cases we always adopt the same strategy. We first
count the number of choices for a generator of 7' N InnDiag (G), then we
count the number of choices for a generator of 7' modulo 7N
N InnDiag (G), and finally we count the number of choices for a generator
of C modulo 7.
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We describe the calculations in detail only for the first case.

Let C' be another complement of of G in H; then we may assume that
it is of the form C' = (¢"tu, w?v, wrx), with u, v, reG.

By Table 4.5.1 of [4] we have at most [ — 1 choices for w?v, up to G-
conjugacy. Moreover let C* = Crypiag(c) (w?v) and L* =0P(C*). From
table 4.5.1 of [4] it follows that

l) either L* :le—l(q) and Z = Cc*(L*) = CInnDiag(G)Fk(L*) has
order ¢+ 1 or
ii) L*=D;(q) xD,_;(q) or L*=2D;(q) X2D,_(q), where 2 <1i <

< é and Z = Cpr(L*) = Crunpiag(ey r, (L *) has order 2.

We first deal with case ii). Note that wrx centralizes w?v, so it nor-
malizes L*. Let (y1, ¥2) €e Aut °D;(q)) X Aut °D,_,(q)) be the image of
wrtx in Aut (L *). The number of choices for wrx, up to G-conjugacy, is
bounded by |Z|r 7z, where r; —1 is the number of °D;(q)-conjugacy
classes of involutions in InnDiag (° D;(q)) I" (we have to add one because
y; might be the identity) and 7, — 1 is the number of ° D, _,;(g)-conjugacy
classes of involutions in InnDiag (°D,;_;(q)) I'. Again by table 4.5.1 of [4]
we have that r, 1, <61+ 25.

Note: For © =2, 3 it is easy to check that »;, r, < 61 + 25 is still true
(see [p. 11] [4] and [p. 43] [7] for the description of D; in these
cases).

So there are at most 2(61 + 25)% choices for wrz.

We now have to choose ¢ " 7u. Note that once we have fixed ¢ 7u with
the required properties, any other element of the form ¢"7u’ is such
that (¢ tu)~! ¢"tu’ € Ce(w?v), so we have at most |Cq(w?v) | choices
for the third generator.

A similar argument applies to case i).

To conclude, we have that the number of complements for G in H is at
most (I —1)2(61 + 25)* |U|, where U is a maximal subgroup of G, and
this number is less than |G|, as by Table 5.2 A of [p.175] [7] the index of

I -1
a maximal subgroup of G is at least @ - +1 and 2({ — 1)(61 +

l_ -1 q_]_
posp< LT DC D e 125 and g2 9).

Let C < OutDiag(G) T
Then C is generated by two involutions « and v, that are of graph

type or of inner-diagonal type, depending on which case we are conside-
ring, and we argue as in Case I above.
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6. Dy(q).

In this case we have that OutDiag(G)=1 if p =2, otherwise
OutDiag (G) = (Z) x (w) is elementary abelian of order 4 and it is centra-
lized by ¢. Also, I' = (7, y) is isomorphic to S3 with |z| =2, |y| =3, w" =
= wz, 2" = z, while (InnDiag (&) I')/G is isomorphic to S, and is centralized
by ¢. _

Let T = C N InnDiag (G) I', and let T be its image in Out G. By propo-
sition 1.3 we may assume that C is not cyclic, and it is easy to check that
C splits over T.

Case: C % InnDiag(G) I’
I) Assume that it is possible to choose a generator ¢"u of C mo-

dulo T of order =~ and with u e InnDiag (G).

r

If T is cyclic we conclude by proposition 1.5, so we may assume that T
is not cyeclic.

Assume that p is odd. By proposition 1.1 we have at most 4 possibili-
ties for the choice of ¢ "u, up to G-conjugacy, and we may assume that it
is of the form (¢")" for some x e InnDiag (G).

We may also assume that one generator of T is an involution % such
that y centralizes ¢". As we may conjugate y¥” by elements of the form
w” e G, where w centralizes ¢", the choices for y are bounded by the
number of G-conjugacy classes of non-inner involutions of fixed type in
InnDiag (D4(p™)) I', which by table 4.5.1 of [4] is at most 24. The second
generator of T is an element of InnDiag (Ds(p”)) I’ and we have that
96 | InnDiag (Dy(p")) I'| < |G|, as we wanted.

If p = 2 then by proposition 1.1 we have at most one possibility for the
choice of ¢"u, up to conjugacy; we therefore take x = 1. Moreover, T is
generated by a graph automorphism y of order 3, and a graph type invo-
lution v, which both centralize ¢". Arguing as above and using table
4.7.3A of [4] we find that there are at most 16 | InnDiag (D,(2") I'| <
< |G| choices, as we wanted.

II) Assume that we are not in the previous case and let ¢"a be a

generator of C modulo 7T of order 7 With ae InnDiag (G) T,
a ¢ InnDiag (G). "

If T is cyclic, as we are not in case I it is easy to see that T has order 2
or 3.

If T = (y) has order 3 then y is of graph type. We now apply proposi-
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tion 1.7. By table 4.7.3A of [4] if p # 3 and by proposition 4.9.2 (b5) and
(g) of [4] if p =3 we have at most 16 G-conjugacy classes of type graph
elements of order 3. Moreover, by El‘@kll? )?.ZA f{ )[p. 175] [7] the index of
a maximal sbgroup of G is at least % > 16, so we have what
we wanted.

If T has order 2 we argue as follows. By proposition 1.1 we have at
most 4 possibilities for the choice of the first generator, up to G-conjuga-
cy. Once we have fixed the first generator, say ¢ "au, the second genera-
tor b has the property that [¢"au, b] = 1. Thus the possible choices for
the second generator are given by elements of the type bv, with ve G,
such that [¢"au, bv] =1, so that v e C;(¢p" an). It follows that we have at
most 4 |Cz(¢"au) | < |G| choices, as we wanted (note that C;(¢"au) is a
proper subgroup of G, so that its index is greater than 4).

Now we may assume that 7T is not cyclic. As we are not in case I it fol-
lows that OutDiag (G) < T and that T'= (y, y?"“) for some % in T, where
y has order 2 or 3, so that C = (¢"a, y). Now proposition 1.6 allows us to
conclude.

Case: C < InnDiag (G) I

We first assume that p = 2. Then C = (x, y) = I', where x and y are
both of graph type, |x| =3, |y| =2 and ¥ =« ~'. By table 4.7.3A of [4]
there are at most 4 G-conjugacy classes of type graph elements of order
3. By proposition 1.7 there are at most 4 | Z| conjugacy classes of comple-
ments for G in H, where Z is a maximal subgroup of G. To conclude, we
note that by Table 5.2A of [p. 175] [7] we have that 4 < |G: Z]|.

We now assume that p is odd.

I) If C = OutDiag (G) I" then C is isomorphic to either S, or S5 and
it is generated by 2 elements « and y of graph type, with |x| =3 and
ly| =2.

By table 4.7.3A of [4] if p # 3 and by proposition 4.9.2 (b5) and (g) of
[4] if p = 3 there are at most 16 G-conjugacy classes of type graph ele-
ments of order 3. Also, there are at most 6 InnDiag (G)-conjugacy clas-
ses of involutions of graph type, and if g is a graph type involution such
that H = Cinpiag()(9) has minimum order, there are at most
6| InnDiag (G): H| <24 |G : G N H| choices for y. As |HN G| > 16-24,
it follows tht 16-24 |G : G N H| < |G|. (The structure of G N H is given
in table 4.5.1 of [4].)
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IT) In the remaining cases, we have that C = (x, y) where |x| =2,
x e InnDiag (G)\G and |y| € {2, 3} and the type of y is known (either
y € InnDiag (G)\G or y is of graph type). Arguing as in case I, by tables
4.5.1 and 4.7.3A and proposition 4.9.2 of [4], there are at most 6 choices
for a, up to G-conjugacy, and at most 24 |G : G N H | choices for y, where
H = Cipnpiag()(9) for some g such that g has the same order and type of
y. As |HNG| >6-24, it follows that 6-24|G: GNH| < |G|. (The
structure of G N H is given in table 4.5.1 of [4].)

7. 2Dy(q).

If p=2 we have that C is cyclic, so we may assume that p is
odd.

Cases: | even or | odd and 4 ¥ g+ 1

We have that C is isomorphic to a subgroup C of Z, X Z,,,, with Z, =
=(aG) and Z,,, = (¢), where a e InnDiag (G).

We have that C = (y, ¢"u) where y € InnDiag (G) \Inn (G) has order
2 and is centralized by ¢"u, so we may apply proposition 1.7. By Table
4.5.1 of [4] there are at most [ — 1 conjugacy classes of non-inner inner-
diagonal involutions, and by Table 5.2A of [p. 175] [7], the index of a ma-
ximal subgroup of G is bigger than [ — 1. This allows us to conclude.

lodd, 4|q+1

In this case 4 |[p + 1 and m is odd. We have that C is isomorphic to a
subgroup of Z, X Z,,, with Z,={(aG) and Z,, ={(¢), where ae
€ InnDiag (G). Moreover (aG)? = (aG)™.

If C N InnDiag(G) has order 2 we argue exactly as in the previous
case.

So we may assume that C N InnDiag (G) has order 4, and that any
other complement C' is of the form C’'=(x, ¢"y), where xe
e InnDiag (G) has order 4, x?eInnDiag(G)\Inn(G) and x ¢’y =
=V,

We argue in a similar way as for a subcase of D,;(q).

By Table 4.5.1 of [4] we have at most HTl choices for x2, up to G-con-

jugacy. Moreover let C* = CInnDiag(G)(x2) and L* =0P(C*). From table
4.5.1 of [4] it follows that L* is one of the following:
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) L*=2D;_1(¢) and Z = Cp+(L*) = Crpiag)(L*) has order
-1

ii) L*=2D;(q) X D;_;(q), where i is even, ie {2,...,1—3}, and
Z = ch(L *) = CInnDiag(G) (L >X<) has order 2,

i) L*=SUW, ), C*=GUW, ¢ and  Z=Ce-(L*)=
= Crunbiag(c) (L ™) has order ¢ + 1.

We note that the case L* =2D;(q) X D,_;(q), where i is odd occurs
only if 22 is inner, which is not our case. To see this, note that G =
= PQ "~ (21, q), and we may assume that the matrix associated to the sym-
metric bilinear form is the identity. We then have that in this case 22 is
the image in PR~ (2l, q) of the matrix diag(—-1,..., —1,1,...,1),
where the number of entries equal to —1 is 27, and then by proposition
2.5.13 of [7] «? is inner.

We first deal with case ii). Note that x centralizes 2, so it normalizes
L*. Let (y;, ¥2) e Aut(D;(q)) X Aut(D,_;(q)) be the image of x in
Aut (L*). We note that (y;, ¥») has order 2, so the number of choices for
x, up to G-conjugacy, is bounded by |Z|7; 7y, where r; — 1 is the number
of 2D;(q)-conjugacy classes of involutions in InnDiag 3 D;(q)) I' (we have
to add one because y; might be the identity) and 7, — 1 is the number of
D;_,;(g)-conjugacy classes of involutions in InnDiag (D;_;(q)) I'. Again
by table 4.5.1 of [4] we have that r; <3i+ 1, r,<3(l—1)+9.

Note: it is easy to check that for 7 = [ — 3 it is still true that r, < 3(l —
—1)+ 9, and the same holds for ¢ =2 and r; <37 + 1 (see [p. 11] [4] and
[p. 43] [7] for the description of D; in these cases).

As the maximum of the function f(z) = (32 +1)(3l -3z +9) is EZZ +

+ 151 + 25, once we have fixed 22 in case ii) there are at most 9121300 +
+ 50 choices for «. 2
A similar argument applies to case i), and we get at most 4(37+ 6) <

< %F + 301 + 50 choices for x.

We are left with case iii). In this case « is a unitary matrix of order 4.
Arguing as in section 3, as [ is odd we have that x is conjugate in
GU (I, q) to a diagonal matrix whose entries on the diagonal are of the
form e’, where ¢ is a primitive 4-th root of 1. Moreover, if GF(¢%)* = (1),
we have that diag (197!, 1, ..., 1) is a unitary matrix centralizing x, so
that the number of SU(l, q) conjugacy classes for x is at most
4l -2t
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Now we apply proposition 1.7. By table 5.2 A of [p. 175] [7] the index
(¢'+1)q'"'-1)

n , which is greater
q-

of a maximal subgroup of G is at least

than ”Tlmax[gzz +300 +50, 2(2! — 1)].

8. Egs(q).

We have that C is isomorphic to a subgroup C of Out(G) < S; X Z,,,
with Z,, = (¢G), Ss=(aG, 1G), |aG| =3, |7| =2, (aG)’=(aG)!,
OutDiag (G) < (aG) and I(G) = (). Also, ¢ centralizes 7 and either in-
verts or centralizes aG.

By proposition 1.3 we may assume that C is not cyclie.

Let C % OutDiag(G) I', T = C N InnDiag (G) I

I) Assume that it is possible to choose a generator ¢"x of C modu-

lo T of order 2% and with e InnDiag (G).

,
By proposition 1.1 we have at most 3 possibilities for the choice of

¢"x, up to conjugacy. Moreover, by proposition 1.5 we may assume that
T = OutDiag (G)) I.

We have that T is generated by a graph-type involution % centrali-
zing a suitable conjugate of ¢" and an element v € InnDiag (G)\ Inn(G)
of order 3. We now argue as in the analogue of this case for D,;(q).

By Table 4.5.1 and proposition 4.9.2 (b)(4) and (f) of [4] there are
at most 2 choices for u, up to G-conjugacy. By table 4.7.3A of [4] there
are at most 8 G-conjugacy classes of elements of order 3
in InnDiag(G)\Inn(G), and each of them has at most
| InnDiag (G) : Cranpiag()(9) | elements, where g is an element of one of
those classes such that Cg(g) has minimum order. To conclude, it is enou-
gh to note that |Cs(g) | > 48.

II) It is easy to see that if we are not in the previous case then it is

possible to choose a generator ¢ "z of C modulo T of order ™ and with
7

z € InnDiag (G) I'. Moreover, T is cyclic of order 3, so proposition 1.7 ap-
plies. By Table 4.7.3A of [4] the number of G-conjugacy classes of ele-
ments of order 3 in InnDiag (G)\Inn (G) is at most 8, which is less than
the index of a maximal subgroup of G.

Let C < InnDiag (G) I
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We have that C is generated by a graph-type involution % and an element
v € InnDiag (G)\Inn (G) of order 3 and we argue as in case 1.

9. 2E,(q).

We have that C is isomorphic to a subgroup C of Out(G) < Z5 X Z,,,
with Z,, = {(¢G) and Z3 = (aG, 1G) and a e InnDiag (G).

By proposition 1.3 we may assume that C is not cyclic, so that C =
= (y, ¢"z),wherez € InnDiag (G); alsoy € InnDiag (G) \ Inn (G) has order
3 and it is normalized by ¢"z.

By table 4.7.3A of [4] there are at most 8 G-conjugacy classes of type
graph elements of order 3. By proposition 1.7 there are at most 8 |Z]|
conjugacy classes of complements for G in H, where Z is a maximal sub-
group of G. To conclude, we note that by Table 5.2A of [p. 175] [7] we ha-
ve that 8 < |G : Z].
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