REND. SEM. MAT. UN1v. PADOVA, Vol. 107 (2002)

Examples of Birationality of Pluricanonical Maps.

SANDRA CHIARUTTINI (¥*) - REMO GATTAZZO (¥)

ABSTRACT - By generalizing an Enriques construction, in P* we construct a double
space V of degree 12, whose branch locus has a 6-ple point of the type
254+ 22+ +y2=0. We demonstrate that a desingularization of V has
birational invariants ¢, =¢,=0, p,=P;=3, P,=7, P;=13, P;=22,
P; =34, Pg =51. Moreover, we prove that the m-canonical transformation has
fibers that are generically finite sets if and only if m = 2 and it is birational if
and only if m = 6.

Introduction.

E. Bombieri [B] proved that the m-canonical transformation of any
nonsingular surface of general type is birational if m =5 and m =5 is
the minimum for the surfaces (minimal models) with (K2)=1 and
Py =2.

F. Enriques constructed a surface with (K?) =1, Py =2 (see [E] § 14,
pp. 303-304); this is a desingularization of a double plane with a branch
curve of degree 10, having a singular [5,5] point on it.

At a seminar, E. Stagnaro suggested generalizing the Enriques
double plane to a three-dimensional double space for constructing new
examples of threefolds, whose m-canonical transformation becomes bira-
tional if m is large enough.

This paper touches first on a demonstration of the fact that the m-
canonical transformation of the Enriques example is birational if and
only if m =5, then such a situation is generalized, constructing a double
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space V. We thus have the birationality of the m-canonical transforma-
tion if and only if m = 6. A desingularization of V has the birational
invariants ¢, =¢,=0, p,=P,=3, P,=17, P;=13, P,=22, P;=34,
Py =51.

We define double space of degree 2n the projective closure in P* of
the affine hypersurface given by t%=f,, (x, v, 2), being f,(x, ¥, z) a
polynomial of degree 2n; the surface of equation f;,(x, ¥, 2) =0 is the
branch locus of the double space.

We must bear in mind that a double plane with a branch curve of de-
gree 10 with a singular [5,5] point on it is affinely represented by an
equation of the type z2+y°+ -+ + 2= 0. In the following paragraphs,
said situation will be generalized by constructing a double space affinely
given by an equation of the type t2+ 2%+ -+ %+ +y2=0.

M. Chen [C] and S. Lee [L] proved that if the canonical divisor K of a
threefold is «nef» and (K?) is positive, then the m-canonical transforma-
tion is birational for m = 6. In the proposed example the said properties
are not simultaneously satisfied, but the birationality of the m-canoniecal
transformation holds true for m = 6.

In this paper we consider surfaces and threefolds on the field C of
the complex numbers and we’ll write PV instead of P¥.

1. Example of a double plane S of degree 10 in P? whose m-canoni-
cal transformation is birational if and only if m = 5.

1.1. Description of S.

Let us choose a generic curve C in the linear system of curves in P2
defined by

Fro(Xo, X1, Xo) = aX? X3 + bX, X§ + X0 + dX 1,

According to Bertini theorem, C has its unique singularity at the point
Ay= (1,0, 0). To be more precise, C has a [5, 5] point at A, i.e. a 5-ple
point with an infinitely near 5-ple point. By using the affine coordi-
nates
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we obtain the polynomial
fole, y) =ay®+ by® + ca® + dy

and hence the double plane of affine equation 22 = f;,(x, »). Let S be its
projective closure in P3:

S: X§XF — aX§ X3 — bX,X§ — cX{* —dX* =0

S is normal and its singularities are the points A; = (0, 0, 0, 1) and
Ay=(1,0,0,0). To be more precise:

— S has an 8-ple point at A; and four double curves r;, 7, 73, 74 in-
finitely near in the next neighbourhoods;

— S has a double point at A, with a double curve 75, a double point
P and again two double curves 7; and 7; infinitely near, in the next
neighbourhoods.

1.2. Birationality of the m-canonical transformation for m = 5.

We state the birationality of the m-canonical transformation, m =5,
using the theory of adjoints of Enriques. This theory has recently been
revised by E. Stagnaro in [S,]. We keep the same nomenclature and no-
tations as are used in said paper. In our examples all the singularities
satisfy the hypothesis assumed in [S;].

The properties of a double plane are well known, but it may be useful
to mention the ones that will be generalized to the hypersurface (double
space) in P* that we construct later on.

It is maybe less well known, however see [E], [S;], [S;] (a detailed cal-
culation of the bicanonical adjoints is given in [S;]), that the m-canonical
adjoints to a double plane of affine equation S: z%=f;,(x, ¥), with a
nonsingular branch curve f,,(x, y) =0, are:

¢m(nfS)(xa y) + Z(p(mfl)nme(xy ?/) =0 )

where ¢ ;(x, y) denotes a polynomial of degree ¢ in «, y.

In compliance with [S], let us call the m-canonical adjoints defined
by ¢ -3 (x, ¥y) =0 as global and the m-canonical adjoints defined by
2P m-1yn—3m(@, y) =0 as non-global.

Let us emphasize the following facts.

1. The m-canonical transformation ¢, coincides (on an open
set), up to isomorphisms, with the rational transformation v, s pro-
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duced by the linear system of the m-canonical adjoints restricted
to the double plane S (see [S,], section 16).

2. If we want ¥ ,,5 to be birational, it is necessary (but generally
not sufficient) for at least one of the m-canonical adjoints to be of the
kind 2¢ (- 1)n—3m(®, ¥) = 0. Conversely, the transformation is generi-
cally 2:1, at most.

3. It is possible to prove (but we omit the demonstration) that in
every m-canonical adjoint, m < 4, the «z» coefficient vanishes as soon as
the branch curve has a [5,5] point on it.

4. From 2 and 3 it follows for m < 4 that v, |5, S0 ¢ |,.x|, cannot be
birational. Moreover, one can prove directly that y ;s is birational and
also that ¥, s is birational for m =5, because p, is positive.

The idea for generalizing all this to double spaces is to transfer the
properties 1, 2, 3 and 4 to a suitable double space. As a result, in the case
of our example at least, the birationality holds true if and only if
m = 6.

2. Example of a double space V of degree 12 in P%, whose m-canoni-
cal transformation is birational if and only if m = 6.

2.1. Description of V.

To extend the foregoing situation to P4, let S be a generic surface in
the linear system of surfaces in P? defined by

Fio(Xy, X1, Xo, X3) = aX§ X3 + bXo X3! + cX{% + dX3% + eX32.

According to Bertini theorem, S has a unique singularity at the point
Ay= (1, 0,0, 0). To be more specific, S has a 6-ple point at A, with an in-
finitely near 6-ple curve. By using the affine coordinates

X; X, X; X,
==, Yy=—-, 2=—, t=—
X X X X

we obtain the polynomial
fo(@,y,2) =azb+ bz + cx+ dy'% + ez!?

and hence the hypersurface of affine equation t%=f5(x, ¥y, 2).
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Let V be its projective closure in P*:
Vi X{OXE - aX§ XS — bX,X{ - eXiZ - dXf2 - X2 =0.

We call V a double space, according to our definition.
V is normal and only has singularities at A, = (0, 0, 0, 0, 1) and at
Ay=(1,0,0,0,0). To be more precise:

— V has a 10-ple point at A, with 5 double surfaces a1, ..., a; in-
finitely near, in the next neighbourhoods,

— V has a double point at A, with 2 double surfaces ag, a7, 1
double curve s, and 2 double surfaces ag, a4 infinitely near, in the next
neighbourhoods.

2.2. Computation of p,= P, and P,, of V.
Now we calculate the genus and plurigenera of V, i.e.
P, =dimcH"(X, Ox(mKy)) = dim|mKx| +1, m=1, p,=P,

where X denotes a nonsingular model of V.

The path chosen for constructing X consists in two sequences of rela-
tions owing to the singularities of V at A, and A,.

To solve the singularity at A, we have the following sequence of
blow-ups:
) Ve PSP, 3P, 5P, 3P, 3P, 5PtV
where 77, denotes the blow-up of P* at A, and 7; (2 <14 <6) is the blow-
up of P;_; along a;_;. From (1) the relations follow:

{Kplzﬂik(KP4)+3EA4 {Kpi:ﬂf(KPil)—'—Eail (ZSZsG),

Vi=at(V)—10E,, | Vi=a#(V,_,)—2E,,

where Ey,, E,, denote the exceptional divisors of the blow-ups at A, and
o; and V; denotes the strict transformation of V;_;.

To solve the singularity at A, we have the following sequence of
blow-ups:

12 11 10 9 T8 T

@) VieC P = Py = Py =Py =Py —=Pr = P52 Vs
(in the following V}, will be X), where m; is the blow-up of Py at Ay, 7g
and 74 are the blow-ups of P; and Pg along a4 and a , 74, is the blow-up
of Py along s and finally 77 {; and 7 1, are the blow-ups of P}, and P;; along
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ag and ay. From (2) we can say that:
{Km:n;"(KpG)JrSEAO {Kpgzng‘(lﬂ[%)JrEa6
V7:ﬂ>7k(V6)_2EA0 V8:W§(V7)_2Eaﬁ

{ Kpg:ﬂg‘(KPS)‘}'Ea,‘_ {KPIOZnTO(KP9)+2ES
V9:ﬂ§k(v8)_2Ea7 V10=7t’1"0(V9)—2E8

{ KPn:ﬂ:lkl(KPm)—'—Eag { K.Plz:ﬂikz(Kpn)—'—Eag
Vi =nti (Vi) — 2E, X=Vip=n%Vy) -2E,,,

where K, , E,, and E; denote the exceptional divisors of the blow-ups at
Ay, a; and s.

Because X is nonsingular, we can apply the adjunction formula that
states: if D is a divisor linearly equivalent to Kp, + X, i.e. D = K, + X, and
if D|x is defined, then D x = Ky, where Ky is a canonical divisor on X.

Substituting from the above relations, we obtain

3) Ko, +X=
aip (i (g (md (nf (w§ (wf (wf (wf (s (] (Kps+ V) —TE,,) —

E,)-E,)-E,)~E,)—E,)+E,)~E,)~E,)~E,)~E,,.

We now have Ky« = —5H and V = 12H, where H is a hyperplane in P*. If
@, =TH denotes a hypersurface of degree 7 in P*, we deduce from (3)

4) Kp,+X=
iyt (i (@ (g (s (@] (@f (3 (] (Pr) —TEs) —E, )~ E,)—
E.)—E,)~E,)+Ey)—~E,)—E,)-E,)—-E,=D.

We see from the adjunction formula that, if Dy is defined, then it is a
canonical divisor Ky on X, ie. D x=Kx = Ky.
If we multiply (4) by the integer m =1, we obtain

®) m(Kp,, + X) =
al (i@l (e (g (g il as i (Dr,) —Tmby)—mE, ) —
mkE,,)—mE,)—mE,)—mE,)+mE,)—mE,)—mE,))—mE,)—mE, =
mD=D",

where @, is a hypersurface of degree 7m in P*.
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As before we obtain Dx = mKy.

Let o\x: X—V, where 0 =m50... 03 0T, be the desingularization
of V described.

Using the theory of adjoints and pluriadjoints, we can calculate
p, =P, and P, ; again we use the nomenclature and notations of [S,].

D 7,,, m = 1, is an m-canonical adjoint to V' (with respect to o) if Dy is
effective, i.e. D|’X> 0 (see [Ss], section 2).

We see first how the presence of the singular point A, characterizes
the canonical and m-canonical adjoints.

The condition 7§ (P ;) — TE4, = 0in (4), given by A,, says that if @7 is
a global canonical adjoint, then A, must be a 7-ple point for @, itself, i.e.
@ ; is defined by a form F'; in X;, X;, X,, X5. The further condition given
by Ay

ai (a3 (af(@F (@3 (a{(Pq)—TEs)—E,)-E,)-E,)-E,)-E, =0

(see (4)), implies that it is
F:(Xy, X1, X5, X3, Xy) = X5 Fo (X, X1, Xo, Xs).

The condition

(7§ (% (i (xd (af(Dry) —TmEL) —mE, ) —mE,,) —mE, ) —

ml,,) —mEaS]WGB 0
imposed by A, on the m-canonical adjoints (see (5)) implies that
Fr,.(Xo, X1, X5, X5, Xy) = X" [ X Xy Fspy - 6(Xo, X1, Xoy X5) +

FZM(X()’ X17 XZ; XS)]-

So we have a situation much the same as the double plane. To be more
precise, the m-canonical adjoints to a double space of affine equation
t2=f,,(x, ¥, 2), with a nonsingular branch locus f;, (2, ¥, z) =0, are:

¢m(n—4)(m’ Y, Z) + t¢(m—1)n—4m(x’ Y, Z) =0

where ¢ ;(x, ¥, z) denotes a polynomial of degree ¢ in «, y, .

Here again, let us call the m-canonical adjoints given by
D -1 (@, ¥, 2) =0 global and those given by ¢ ¢, —1yn - am (X, ¥, 2) =0
non-global.

Now let us examine the point A,, which is a singular point for the
double space because there is a 6-ple point on its branch locus.
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From (4) it must be that
Fi(Xy, X1, Xo, X3, Xy) = X5 Xs(a, Xy + a2 X5 + a3 X3).

Let W7 be the vector space of the forms defining global canonical ad-
joints and W7 be the vector space of the forms defining canonical ad-
joints. Since W7 = W7 and p, = dim|Kx| + 1 (see [S;], section 3), it fol-

lows that
Py =3.

We can move on now to consider the point A, for calculating the m-
canonical adjoints (1 > 1). The conditions imposed by A, produce differ-
ent results, depending on the value of m.

For m < 6 the vector spaces of the forms defining global m-canonical
adjoints, Wy,,, and those of the forms defining m-canonical adjoints,
W1.., coincide; but the equality does not hold true for m = 6. Indeed, be-
ing an m-canonical adjoint implies that

(p’Ym: ¢m(6—4)(x’ Y, 2) + t¢(m—1)6—4m(x’ Y, 2) =0
must satisfy the condition (see (5)):
6) [rhf(afh (s (@ (Tf (DPy) + mEy) —mE, ) —mE,)) -
mE,,) —mE’ag)]|XBO.

Now, if m < 6, the degree of the «t» coefficient is too low and it satisfies the
condition (6) if and only if ¢ ¢, — 16— 4 (@, ¥, 2) Vanishes. So, for m <6, @, is
an m-canonical adjoint if and only if it is defined by a form

F7m(X05 X17 XZ’ X3’ X4) :X(?WLXSWLFm(XO) Xl; X2’ X3),

ie. if and only if @, is really a global m-canonical adjoint.
To be more precise, we have

Wi4 = W1,4 = {XOIOXSZ(bIXOXg + b2X12 + b3X1X2 + b4X1X3 +
+ b5X22 + b6X2X3 + b7X32), bi € [C};

Why = Way = { X" X5 (0, X0 X, X3 + 0, X Xo X5 + -+

o+ b Xo X5+ b3 X3), be Cly
Wig = Wag = {X5° X5 (b, X5 X5 + b X X7 X5 + -

o+ by Xo X3+ by X)), e Cly
Wis = Was = { X" X3 (0, X5 X, X5 + by X Xo X5 + -+

cee bgg}(z}(é1 + b34X35), biE C}.
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If m=6, the degree of the «t» coefficient is (m—1)6 —4m=6. This is
the minimum that can satisfy condition (6) and we have the first non-global
m-canonical adjoint which is affinely given by t2%=0. To be more specific,
@, is an m~canonical adjoint (m =6) if and only if it is defined by a form

F42(X07 X17 XZa X37 X4) :Xg)o[X?)GFG(XOr X17 X27 XS) +X63X36X4]

and, in affine coordinates, it has the equation

¢42(9€, Y, =z, t) = z6¢6(90, Y, Z) + tZG =0.
In a detailed expression we obtain

Wi = {X@o’oX;?(an’le +
+b1X03X33 + bQonxlnggz + -+ b49X2X35 + b50X3§), a, biE C}.

So we have a non-global 6-canonical adjoint defined by the form X X5 X,.
In particular, the plurigenera P;=dim|iKx|+1, 1=1 (see [S;]), are

p,=P =8, Py=T7, Py=13, P,=22, P;=34, Pg=5l.

2.3. The m-canonical transformations @ g, 1 <m<5.

In this paragraph, we prove that ¢ ,x,| is a generically 2:1 map for
2sm<5.
Let us consider the following triangle

X -———-- > j)Pi,,fl :pdim|mKX|
A

]
I
O'\X : 1/)717/|V
|
|

v

where o |y is the desingularization of V and v,y is the rational transfor-
mation, restricted to V, defined by the linear system of bicanonical ad-
joints to V. The foregoing diagram is commutative because the divisors
of |mKy| are of the kind

[l (A (D) —Tmly,) - —mE,, ) — mEug]pr-

asg
To prove that ¢ |, | is generically 2: 1, it sufficies to consider such a
transformation on an open set of X. o is a sequence of blow-ups and so it
is an isomorphism outside the exceptional divisors of the single blow-
ups; 0, on an open set of X, o x is an isomorphism. As a result, to say
that @ |k, is generically 2:1 means that v, generically 2:1.
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Now let us demonstrate that v,y is generically 2:1.
Bearing in mind that

Wiy = Wiy = {X0° X5 (0, Xo X5 + by X7 + b X, X, +
+b4X1X3 + b5X22 + b6X2X3 + b7X32), bi € C},
we shall have

Vecp! Y2 P

(Xo, X1, Xp, X3, Xy) = (Yo, ..., ¥5)

defined by

[ Yo= (X" X3) XoX;

Y, = (X" X3) Xt

Yy = (X" X5) X, X,

1 5= (XOIOX:J,Z) X1 X3

Y= (X' X§) X7

Y= (XOIOX:?) X X3

L Y= (X()IOst) X32

Let U=P*— {X,=X; =X; =0} be the affine open set chosen in P*,
with the coordinates

X Xy X3 Xy
r=—, Y=—, 2=—, t=—.
X X X X

Let T=P%— {Y;=Y;=0} be the affine open set in P® with the
coordinates

Yy Y, Ys
?/1—?17 yz—z, ) %:?1
We shall thus have
Y1 = X7
Yz =
You: U — T | ¥s=?

@y, 2,0 = Yy o Yg) ) Ya=y*
Ys =Yz

— ~2
LY =%2".
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Let P=(¥y, ..., Js) be a generic point of Imyyy; the fiber on P is

[2z = Y1)
yigz X2 =7
v ® =@, 9,2 0: 2:%3>={<x,y,z,t>:[y=y2}.
4 _g4 2=1Ys
Yz =1Ys;
L -222?_/&

The fiber on P intersects V; =V N U at two points; indeed,

2102 —axb25 — bzl —c—dy®—ez2=0

15 =Y
VN ysly@) = s =
Y=Y
2=1Y3
- /710
(Z)742 = agf + 07T + ¢ + dTE + T
Ys
Y="Y>
9 _
R=1Ys3
L x=@.
Ys

This means that yy: V—PS so ¢ 2Ky * X— PS5, is generically 2:1. In
particular, we find that V is of general type (Kodaira dimension 3).
It follows that ¢ |,k , m > 2, is also generically % : 1, with n <2.

Let us consider an effective canonical divisor K, which exists because
p, is positive; putting nK + |2Kx| = {nK+D, De |2Kx|} for n=1,
2,... mK fixed part of the linear system), we consider the linear
systems

I_{-f- |2lec |3le,2K+ |2KX| C |4Kx|,,(m_2)K+ |2Kx| C |mel, .

All these linear systems K + |2Kx|, 2K + |2Kx]|, ... give rise to ratio-
nal transformations which are generically n:1, » <2, and so are the
transformations ¢ x|, m = 2.

If 2 <m <5, the absence of any non-global m-canonical adjoint im-
plies that n = 2, which is the statement.

REMARK 1. We said previously that the canonical transformation
@ |k, coincides, up to isomorphisms, with ¥, on an open set. We
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can now note that v,y is generically the projection map of V from
the straight line X; = X, = X;=0 on a plane.

24. The 6-canonical transformation ¢ sy -

Our aim is to prove that ¢ |4k, is birational. Unlike the foregoing cas-
es, this will be based on the existence of the non-global 6-canonical ad-
joint defined by the form G;= X X{X,.

As we did previously, we choose a canonical effective divisor K
(e.g. let K be given by L = X X;X;) and we construct the linear system
4K + |2Kx|C|6Kx|. The linear system 4 K + |2Kx|C|6Ky| defines a
rational transformation which coincides with ¢ |2k, | on an open set, so it
defines a generically 2:1 transformation. Now let’s consider the non-
global 6-canonical adjoint given by G; and let D be the divisor on X de-
fined by it. Note that D =6Ky. Let X be the linear system

{L4(/10F0+"'+/16F6)+A7G7:0, liEC},

with Fo= (X3°X$) Xo X5, F1=(X°X)) X{, Fo=(X"X5) X, X, Fy=
= (X" X3) X, X5, Fy = (X0 X3) X3, F5 = (Xo° X3) X, X3,F = (X3 X§) X5
Note that Fy, ..., Fs span W{,= Wi, and L*F,, ..., L*Fgs, G; span a
vector subspace of Wj,. We obtain 4 K + |2Kx|c X c |6Kx|. The linear
system X defines a rational transformation

Vcp! LA P7

Xy, X1, Xy, X5, Xy) = (Y, ..., Y7)
given by:
Yy = (X§ X X' (X" X3) X X; [ Yy = (X9 X3 X)) (X" XF) X3
Yy = (X0 X, X)) (X" X3) XP Y5 = (X0 X X1)' (X" X3) X, X,
Y,= (X(?X3X1)4(X010X32) X1 X, Ys= (X(?X3X1)4(X010X32) X32
Y;= (XO5X3X1)4(X010X32)X1X3 Y7:X§5X?§X4-

Let us now consider the open affine set U =P*— {X; =X, =X;=0}
in P* with the coordinates
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and the open affine set T=P"— {Y;=Y;=0} in P7 with the coordi-
nates

Y R
Y1 Y1’ -y Y7 Yl-
We obtain:
’y1=.%‘z
Y2=Y
=z
ViU — T .<Zszyz
X, 1z7t g 9ty ) ' !
(x,y ) (¥ Y7 T
?/6:2'2
Yr=x"t.

Yy is 1:1. Indeed let Pi(xy, 1, 21, &) and Py(y, ¥, 22, t2) be two
points on U such that ¢ y(Py) =y y(Py), ie.

X121 = X229, Y1 =Yz, 21 =22, ..., TPt =x5ls.
From y, =y, and z, = z,, it follows that x; =, and finally that ¢, =t,.
This proves that v, so ¢ 4, is birational.

The birationality of @ |,k |, m > 6, follows from this last fact. Indeed,
let us consider an effective canonical divisor K, and let us construct the
linear systems K+ |6Ky|c|7Kx|, 2K+ |6Kx|c|8Kx]|, .... All these
linear systems give rise to rational transformations which are generical-
ly 1:1. So all the transformations ¢ ,.,, m =6, are birational.

REMARK 2. Note that if we «delete» y; =2t in the expression of
Y s U—T, we obtain the v,y of section 2.3. So we have obtained all
the informations we need on the pluricanonical transformations only
considering the linear system of bicanonical adjoints to V and the non-
global 6-canonical adjoint given by X3 X$X,.

2.5. Irregularities of V.
We have to show that the following two relations hold true:

ql(X)=dlm@H1(X, OX)=0, qQ(X):d/meHZ(X, Ox):()

To do this, we use the arguments of [S,], section 4. We consider the sur-
face of degree 12 S=o0 " '(HNYV), where H is the generic hyperplane in
P*. Since A, and A, are isolated singular points on V, then H NV, and so
S, is nonsingular. Thus it is well known (and easy to see, cf. for instance
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formula (36)), that ¢(S) =0. We deduce from remark 8 that

¢1(X) =¢q(S) =0.
In addition from formula (36), we have

¢2(X) = py(X) + p,(S) — dimc Wy,

where Wy is the vector space of the forms defining global adjoints to V in
P* of degree 8. Thus

¢=:(X) =3+ 165 — 168 = 0.

This proves the statement.
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