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Convergence of Numerical Algorithms for Semilinear
Hyperbolic Systems.

D. AREGBA-DRIOLLET (*) - J.-M. MERCIER (**)

ABSTRACT - We study numerical schemes for some semilinear hyperbolic systems.
We want to insure convergence and to be able to detect blow up phenomena.
We construct finite difference schemes and define a maximal convergence
time which is proved to coincide with the maximal existence time of the con-
tinuous solution. Numerical experiments are presented.

1. Introduction.

In this paper we study the convergence of numerical schemes for
some semilinear hyperbolic systems. Here we focus our attention on two
classes of systems for which one does not always know whether the sol-
ution of the Cauchy problem is global in time or not. In order to provide
some answers to this question, we expect the numerical approximation to
converge towards the solution as long as this solution exists and also to
be able to detect an eventual blow up. To reach that aim we use a local
convergence theory in the spirit of [7], whose definitions of stability and
consistency allow us to transpose at the numerical level the wellknown
properties of semilinear hyperbolic systems: local well posedness and
stability for smooth data, finite propagation speed. We define finite dif-
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ference discretizations of our systems for which we construct suitable
functional spaces where stability and consistency hold. Then we are able
to define a maximal convergence time which is proved to coincide with
the maximal existence time of the continuous problem. Actually in the
convergence proof the properties of the exact local solutions as well as
those of the numerical ones are involved (see section 2). Considerations
on special cases and numerical experimentation show that our schemes
actually allow the detection of blow up and its qualitative analysis.

The first class of systems under consideration is a family of one di-
mensional first order systems with quadratic interaction:

1) Syu; + ¢; 3, u; = q;(u), 1<i<L
with

L .
(2) (Iz(u) = Aﬁcujuk, 1<is<L

=

Jrk=1

The speeds c; and the interaction coefficients Aj, are real and u =
= (U <is<L-

The second family of problems is a system of wave equations with cu-
bic interaction:

(&% — &) uy =g, uyuf

3 P(e,,
® (e 82){ (3 — &) up = exupuf

with &, e, {—1, +1}.

Systems of type (1) or (3) arise in various fields of physics, generally
as a simplification of more complicated nonlinear problems. For example
in kinetic theory of gases, the discrete Boltzmann equations are of type
(1) (see [19] for instance). In plasma physics the 3-waves complex valued
system:

atul + Cl azul = Ku2u3
(4) atu2+cgc9x'tl,2=-—K*u3*u1 KeC

Oyug + c3 9, uz = — K* uyus*
can be put in form (1). If L = 2 the results concerning the global Cauchy
problem for (1) with «small data» or «large data» are complete [2]. For
L =3 global existence theorems are known for particular cases as dis-

crete Boltzmann equations with positive data [19], [3] or conservative
systems [8] among which (4). Also some blow up results are available but
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there is no general classification. A lot of numerical studies are con-
cerned with discrete velocity Boltzmann models. In [20] a fractional step
method is used to prove a global existence result of Carleman’s model. In
[5], the fluid dynamical limit of Broadwell’s model is studied numerically.
In [16] uniform convergence results are proved under some Tartar’s
type asumptions [19]. One can see also [9]. Note that all these papers
deal with global solutions while our viewpoint is the approximation of
possibly blowing up solutions. Systems of type (4) have also been numer-
ically experimented, see for example [11]. In this paper we use a frac-
tional step method where the linear part is solved exactly and the nonlin-
ear part is discretized by a semi-implicit method. The convergence is ob-
tained by proving local uniform stability in L * and consistency in L *, lo-
cally uniformly in W' ~.

P(+1, —1) comes from the field theory (see [13] and related refer-
ences for a survey) and the associated Cauchy problem may be interpret-
ed as an intermediate one between P(+1, +1) and P(—1, —1). Actual-
ly, the long time behavior of solutions in the €, &, > 0 cases are better un-
derstood [13], but the question of the global existence in time for smooth
enough solutions of P(+1, —1) still remains open (see [14] for partial
results). A numerical experimentation of the behavior of a Klein-Gordon
equation with a homogeneous and supercritical semilinearity in the
three dimensional case owning spherically symmetric data is done in
[18). These authors solve numerically an equivalent one dimensional
problem. They use an implicit scheme, more precisely an explicit one for
the linear wave equation part and an implicit one for the nonlinear part.
In the three dimensional case with spherically symmetric data, algo-
rithms devoted to semilinear wave equations are studied also in [17] in
the suberitical case of a semilinearity. Here the problem is solved direct-
ly expressing the equation in polar coordinates, but with the same type
of scheme. These authors prove a convergence result in the conservative
case using abstract convergence theorem. The previous works are ex-
tended in the three dimensional case without spherically assumptions
over the initial data in [6]. We also use the previous ideas, but our ap-
proach is a little bit different since we are interested also in the blow up
cases. First we define a semi implicit scheme : we use the same dis-
cretization as in [18] for the linear part of the wave equation, but the
nonlinear part is treated in such a way that we compute an explicit sol-
ution. This avoids some technical difficulties linked to the implicit nature
of a scheme, while keeping its essential property of conservation. Fur-
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thermore, we define energy type functional spaces of regular functions
in which our algorithm naturally acts. The computed solution is then the
values of a function onto the points of a regular grid. This improvement
allows us, using an energy type approach to this problem, to give self
contained proofs of convergence results.

The plan of the paper is the following: in section 2 we recall the need-
ed theoritical results for (1) and (3) and present them in a synthetized
and rather general form. The second part of this section is then devoted
to a general framework of the numerical theory: we define a numerical
maximal convergence time and we precise what stability and consistency
conditions have to be satisfied in order to obtain the local convergence
and the coincidence of numerical convergence time and theoritical maxi-
mal existence time (Theorem 2.5). Part 3 (resp. 4) is devoted to the spe-
cific study of (1) (resp. (3)). Numerical experiments are presented in the
fifth part of this paper. In the annex we give some results for a three di-
mensional axisymmetric version of (3).

2. A general framework.

In this section we give sufficient conditions for a numerical scheme
for a semilinear system of type (1) or (3) to converge. The solutions of the
considered system as well as the numerical ones are involved, so that we
first give some theoritical results. The local theory for semilinear hyper-
bolic problems is rather classical, see for example [12], [10] and refe-
rences therein.

2.1. Local existence results

2.1.1. Local existence for system (1). — Consider system (1) where
#=(u;)1<i<z is real and the system is hyperbolic: the speeds c;
are real. Note that the diagonality is not restrictive because the
interaction remains quadratic through a linear change of function.
We take initial data ¢ € Wb *(R)*:

®) u(0,.) = ¢(.)
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For ue W' *(R)* we denote:

ol = max loalle, i, = = il + o

THEOREM 2.1. Take ¢ € L * (R)~

1) There exists a unique local solution u of (1)(5), we L~ ([0, T,
L>R¥)NC([0, T1, ®'(R)') and there exists a constant C, which
depends only on the coefficients Aj; of the interaction such that for all
a>|¢ll. one can take

a— ol
6 T=__1"l=
6 Cra?
and then
) sup |lu®)|.<a
telo, T]

2) If w exists in L= ([0, Ty], L*(R)*) and if moreover ¢e
eWh *(R)* then ueL > ([0, T,], W: = (RY*)NC°([0, Ty,], L (R)").

8) Let T* =sup {T, u exists in L= ([0, T], L= (R)*)}. Then ei-
ther T* = + © or tli“},”u(t)”w = + oo,

2.1.2. Local existence for system (3) — All the results of this para-
graph are available with the same statement in the three dimensional
case, and we refer to [13] for a complete proof.

First we express the one dimensional Cauchy problem in the follow-
ing alternate Hamiltonian form:

®  Pley, e2):

d (U 74
a\v) ; U0, @) = U°w), 3,U(0, @) = VO (@)}
{dt(v) (3§U+Q8(U)U) (0, 2) = U(®), 3,U(0, 2) (x)]

. € 17/‘22 0
with U=T(u19 uz), V=T(atu17 atuZ)v and QE(U) = 0 e
E9 Uy
We denote with W="(U, V) the solution of (8) for initial data W°=
=W(0) =T(U°, V°). These initial conditions are chosen in the functional
space Y*=[H*(R) x [H* (R)]?, where H* is the usual Sobolev
space.
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THEOREM 22. Let u=1 and W°e Y* There exists T >0 such that
P(eq, £3) defines a unique solution We C°([0, T]; Y*).

Let T* be the supremum over all T > 0 for which We C°([0, T]; Y*).
Remark that T* = T*[W?, ¢, u]. For instance, we deduce from Sobolev
injection u <u’' = T*[u]l=T*[u']. We precise in the next theorem the
behavior of a solution in a neighborhood of a presupposed finite blow up
time.

THEOREM 2.3. Let u=1 and W°eY*. Suppose that T*[W?, e, u] <.

D T*[ul=T*1]=T*
i) lim supl(us, 00); H' (R) X LERI(0) = +0 and
lim supll(%z, B
H(R) x LR (1) =
iti) |[W; Y*| < 2||W°, YE,  for every t<(Co/IW® Y'[P)=
= Ts([W°; T[]

2.1.3. Synthesis — The properties appearing in the above results can
be synthetized in view of unifying the presentation of the numerical
theory. We denote for (1):

9) E=W"b=(R)}, Y=2Z=L"*(R)*.
Then we define for (3):

E={UeY* suppU compact}, Y= {UeY? suppU compact},

(10)
Z={UeY", suppU compact}.

We take compactly supported data for numerical purposes (see section 4
below). We have E ¢ Y ¢ Z with continuous imbeddings. Both systems (1)
and (3) may be written in the form

(11) Syu + Au = f(u)
with initial condition
(12) w0, 2) =¢(x), xeR.

In all what follows (11)(12) is considered as the unified representation of
(1) and (3) with related functionnal spaces defined by (9) and (10).

THEOREM 24. For all ¢ € E there exists T(|plz) > 0 and a unique



Convergence of numerical algorithms ete. 247

solution u of (11)(12), ue L ([0, T], E) N C°([0, T, Z). Define
T*=sup {T, u exists in C°([0, T), Z)}.

Either T* = + o or hm supllu(t)||z— + . Moreover, ue L > ([0, T], E)
for all T<T*

DEeFINITION 2.1. If the maximal existence time T* is finite it is
called the blow up time of the solution.

In the following we denote F' the evolution operator associated to the
problem: u(t) = F;¢.
2.2. The convergence theorem.

We discretize (11)(12) by a finite difference method. If 7 and % are the
time step and the space step, they are in a fixed proportion o = tv/h
governed by a CFL condition. We denote %" the numerical solution at
time ¢, =t and K, the semidiscretization operator:

(13) u"tl=Ku"

DEFINITION 2.2. Uniform convergence [7]. For ¢ € Z the scheme K,
converges uniformly on [0, T towards ce C°([0, T, Z) if
(14) lim  sup Ko - c(®)z=0.

N— te

DEFINITION 2.3. Numerical blow up time. For ¢ e Z the maximal
convergence time T**(¢) for the scheme K, is defined by:

T**(¢) = sup{T = 0; K, converges uniformly on [0, T']}.

If T**(¢) is finite we call it the numerical blow up time.

We suppose that for n =0, u,eY and that we can define on
Y a family of norms X* depending on 7 and satisfying

(15) allullz < llu; X7 < Bllully-
We denote
Bgp(A)={¢p<E; |lp|z <A}
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and similarly are defined By(A), Bz(A), B.(A). Our main result is
the following:

THEOREM 2.5. Consider ¢ € E and the scheme (13). Suppose that
the following conditions are satisfied:
A) Local uniform stability.
For all A> 0 there exists Ts(A) >0 such that:
(16) VYN>1,Vn<N,Vte[0, T5(A4)],

sup IKvy1— Kivya; XV < yllp,—pa; X
(¥1, ¥2) e Byn(AP

Here y is a uniform constant.

B) Local uniform consistency.
For all M >0, there exist C>0 and 7,>0 such that if 1<7,
then:

am sup ”Kr'/’ - Fr 1/)”Y< Ctz'
lholle < M

Then:
(i) The maximal convergence time and the maximal existence
time for (11)(12) are identical.

(i) Let T* be this time. For all Ty < T* the scheme converges uni-
Jormly on [0, Ty] towards the solution of (11) (12).

PROOF OF THEOREM 2.5. The plan of the proof is the following: we
first prove convergence for T’ small enough. Then we prove convergence
for every time of existence of the solution of (11)(12). Finally we prove

T*(¢) =T**(¢).
Let Ty,€]0, T*[ be a time of existence of the solution of (11) (12).
Take go=§ sup IF, plly, A > go, M = Sup ”Ft¢”E: which is finite ac-

elo,
cording to the Theorem 2. We denote TS = mln (Ty, Ts(A)).
Actually we prove a little more than (14): we prove that

(18) lim Sup ”Kt/N¢ Fip; X™|=0.

N—)cot[

1) Local convergence. We estimate the global error by introducing
the approximate solutions issued from each exact F(y_,),¢. For N >1
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and te [0, T¢] we have:
Fig-K ¢p=Fn.¢—KFp_1).¢
+...+
K'Fymyep =K' Fy no1)e
+...0+
KY"'F.¢-KY¢

where

T=

)

t
N
so that
N-1
|F.¢ — KN ¢; X7|| < ng()“KfF(N—n)r‘P —K'K.Foy_n-1).9; X°|.

For0<n<N-1,Fy_n.¢eB,(A) and |Fy _,) . ¢|z < M. Moreover by
(17), there exists 7, such that for r <1,

K. Fn-n-1yc® — Fon-my®; X*|| < BCT2.

Thus K, Fy_n-1):9€B,(A) for N large enough, depending on the
choice of A. Therefore by (16) we obtain:

N-1
”Ft(b—KrN(b;XT||$7n§0"F1F(N—n—1)1¢—KzF(N-n—l)r¢;Xr”-
Hence by (15):
N-1
”Ft¢ _KrN¢v XT” SﬁyngonFrF(N—n—l)tqj - KrF(N—n—l)r¢”Y'

Then we use (17) to conclude that there exists 7, > 0 depending only on
A and M such that:

TZ
VN > T /75, |IF, ¢ — K% ¢; X”Nllsﬂycﬁs.
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In fact by the same argument we also have for all N> T /7,:
19 Vs<T,, Vtels,min(s+ Ty, Ty,

T2
IF,_sFop — KN ynFop; Xt~ sﬂyCR}i .

An important remark is that no estimate of the £ norm of the approxi-
mated solution is needed but only the one of the exact solution.

Consequently the scheme converges uniformly on an interval of
length Tg towards the solution of (1)(5).

2) Convergence on [0, Ty]. We have to consider the case 0 < T <
<T,.Take T=min(Ty, 2Ts). For N> 1and te [0, T], K}y F,x ¢ exists
and

7.9 - ; XU <

< ”Ft/st/z¢ ~KinFind; X2V + |[KENFind — KiinKiing; X2V
By (19)
t s[up |IFpeFyep — Koy Fue 5 Xin| <,3)’C—- .

Also by the first part of the proof we know that
lim sup ”Fz/2¢ K¥no; XN =

N—-+x te [0,

Therefore, for N = N, (4, M), K}y ¢ remains in B;sy5(A) and we can use
(16):

IKSn Finp — KfinKfing; XV || < y|Fyop — Ky 3 X2V
Applying (19) once again, we conclude that
lim ~ sup IIFtsb e XV =0

No+o 4 [o,T
By a classical argument we obtain then the uniform convergence of the
scheme towards the solution of (1)(5) on [0, T].
If Ty < 2T the convergence part of the proof is complete. Otherwise
we can repeat the above argument and reach T, in a finite number of
steps.

3) Blow up times. At this point, we know that T**(¢) = T*(¢).
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Let us suppose T**(¢) > T*(¢). For T**(¢) > T > T*(¢) there exists
ceC([0, T, Z) satisfying (14).

By Theorem 2.4 lim sup||F;¢|; = + ©. For A> sup |lc(t)|z, there
t—>T* tel0,T]

exists ty < T* such that |[F, ¢|l; > A. We obtain a contradiction because
c(ty) = Fy, .

3. A first order system.

In this section we study the convergence of a semi-implicit scheme
for (1). Here G; is a (not necessarily symmetric) bilinear form associated
to qQ;:

Giu,v)= 2 Ajwwy, 1<isL.
1<j, k<L
We discretize system (1) in time on a strip [0, T'] X R by splitting it into
an ordinary differential system and a linear hyperbolic one. For a time

step 7 = T/N we denote %" the numerical solution at time ¢, = » and K,
the semidiscretization operator:

un+1 =K,u”.

We take ° = ¢. For given #" = (u}*); <;<z and xe R, u"*2(x) is an ap-
proximate solution at time ¢, ., of:

v'=GW,v),
v(t,) =u"(x).

(20) {

We use here a semi implicit scheme:

V" ="+ 16G(", v 1) + (1 - 6) G+, v™)]

n+1

where 6 € [0, 1] is a parameter to be chosen. Then u is the exact

solution at time ¢,,; of the system:

{atui+ciaxui=0, 1<:i<L.

ui(t'ru x) = uin+ I/Z(x)
Denoting R(t) u™*2=u"*! the associated group:

R@) u™ "2 (x) = {ul 2@ - ;D h<is<L



252 D. Aregba-Driollet - J.-M. Mercier

the scheme is finally written as:
1) R(-nu"*'=
=u"+70Gu", R(-t)u"*)+ (1 -0) GR(-1) u™*!, u™)].

We do not consider here the space discretization. From a computa-
tional viewpoint, let us remark that if the speeds c; are in a rational pro-
portion, which is usually the case, we are able to choose a space step for
which we can compute the exact solution of (21) onto the points of a regu-
lar grid. In this case, notice also that the numerical domain of influence
coincide with the theoretical one.

The choice of this scheme is.-motivated by the fact that for L =1, (21)
provides the exact solution of the problem:

{ du+ cd,u=u?
u(0,.)=¢.
Actually (21) gives:

u"(x)

w" N (x+cr) = ————
1-mu"(x)

so that »™ = u(t,) and the numerical solution blows up exactly as the ex-
act one. As we see in theorem 2.1 the blow up mechanism is due uniquely
to the explosion of the L * norm of the solution: an explosion of the gra-
dient letting a weak solution exist is not possible. Moreover in all known
proofs of non existence of global smooth solutions of (1)(5) the equation
y' =y? is involved either as a comparison tool or to provide blowing up
solitary waves (see [2] and references therein). Hence one hopes a good
detection of blow up phenomena for (1).
Moreover (21) can be written in a simple linear way:

PROPOSITION 8.1. For xeR the solution R(—1)u"™*1(x) of (21) is
the solution of the linear system:

(22) u™(x) = [ — tA@w™(@))] R(-7) u"*(2)

where A(u™(x)) is a L X L matrixz with coefficients given by
L

(23) Ai(w™(x)) = kgl(GAIZj +(1-0) Al wi ().

Hence if ||A(%™)||» < 7%, the numerical solution does exist and a nume-
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rical blow up criterion is the singularity of I — zA(u"(x)). In practice if
I —tA(u™(x)) is singular the numerical calculation must be stopped on
the domain of influence of « but may be continued elsewhere in the
space-time domain. By this way we construct a maximal domain which
boundary is the numerical blow up curve. See for example [4], [1] for
studies on the theoretical blow up curve.

~LeEmMA 3.1. There exists a constant C>0, depending only on the
4 such that for v < (Cll¢ll.) ™, K. ¢ is defined. Moreover for all g, >0
and A > g, there exist t,> 0 such that:

(24) Vi<ty, |ol.<go= K. 0l <A.

Proor oF LEMMA 3.1. There exists a constant C depending only on
the A}, such that

(25) VweR  |AW)|w<C. |V|o.
Hence for for 7 < (C|¢|l.)~}, K, ¢ is defined and:

]l

(26) K ¢llo < ————.
-0l < Tl

Consequently we have (24) with 7= min(1/Cg,, A — go/ACqg,).
Of course if G is symmetric (4], = Aj;) the value of 6 is indifferent
and it is the most common choice. In this case one obtains easily:

PROPOSITION 3.2. Suppose that G is symmetric and that there
exists a e R such that:

L
Vue RLlE a;q(u) =0.
=1

Then:

L L

> azfuz"“(x)dx= > azfuz"(x) da .

l=1 I=1

R R

As a particular case if one considers a discrete velocity Boltzmann sys-
tem, such an o exists. The above property insures a discrete mass con-
servation analogous to the continuous one. Numerical approximation of

discrete velocity Boltzmann equations has been considered by many au-
thors. See for example [16] and references therein.
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But one may be interested in discretizing so-called conservative sys-
tems [8], that are systems such that there exist 8,, ..., 8. >0 such
that:

L
Vue Rnglﬁzuz(Iz(u) =0

For such an interaction the quantity >, f Biuf(t, x) dx is conserved. It is

R
convenient to write such systems in the canonical non symmetric
form:

i-1 X L .
(27) Gi(u, ’U) = - g]ﬁ]v]lf(u) + .=ZZ+ I,ijjlf(u)

where 8> 0 and 17 (u) = 2 aqk ux. By a straightforward calculation we

can see that if =1 then the scheme (21) is dissipative:
L L
2 B[ Fdrs 3 By f(ul du
=1 I=1
R R
and if 6 =0 then the inverse inequality holds:
L
2 /3 J'(un+1 2d$? 2 ,Blj(uln 2
=1 g

so that it seems to be convenient to choose 6 = 1/2 although this value
does not insure discrete energy conservation. Actually, numerical tests
show that it is the best choice.

Let us now study the convergence of (21). The following lemma en-
sures that the stability requirement of theorem 2.5 is fulfilled. We claim
that on a small time interval [0, T5] the scheme is L * stable, uniformly
locally in L ® and that on this interval the numerical solution depends
continuously on the data in L *, still uniformly locally in L *. Moreover
the estimate on T is the analogue of that obtained on the local existence
time for the continuous problem.

LEMMA 3.2. Local uniform stability. For all A >0 there exists
Ts(A) > 0 such that for all ¢, yeB,(A):

(28) VYN>1, VnsN, Vite[0,TsA)], [King—EKinle<ylp—vl

where y is a uniform constant. Moreover we can choose Ts by the follow-
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ing way:
(29) Ts(A) = (2AC)7!

where C is a constant which depends only on the coefficients A}, of the
interaction.

ProoF oF LEMMA 3.2. We prove first that for all A > 0 there exists
Ts(A) >0 such that:

B0)Vte [0, Ts(A)], VN>1, V<N, K ¢ll. <24 .

sup
peBa(A)
Denoting 7 =t/N, we deduce by a recurrence on (26):

&z 9l < (gl = Cre) 7,
from which we obtain the a priori estimate:

sup ||Kvoll. <(A~1-Ct).
¢eBy(A)

Consequently we can choose Ts< (AC)™ L. If Tg= (2AC)7}, then the
existence of Ky ¢ is ensured for N > 1, ie 7 = ({/N) < (Ts/2) and (30) is
satisfied.

Now, denoting u" = K{ly ¢, v" = Ky ¢, by (22) we have:

u"—v"={ - tAW"))R(-t)u" ' = R(—1)v" 1) —
—t(A(u™) — AW™))R(-1) v"* 1.
Taking into account the fact that
(A@w™) = AWM R(=7) v ' = AV (R(=1) v" )" —v™)
where A (w) = k}: (A}, + (1 - 6) A};) wy, one obtains for N > 1:
lum*t ="+, < (1+8CA)|Ju" — v"||.
which leads to
fu™ = v <elle -yl

and ends the proof of the lemma.

Let us now study the consistency. We prove here that the scheme is
L *-consistent with the problem (1) (5), uniformly locally in W * (R)~.
Actually we prove explicitly that the scheme is first order accurate.
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LEMMA 3.3. Uniform consistency. There eqcist two constants B and
C: which depend only on the coefficients Aj, and the characteristic
speeds c; such that:

Bl  VoeW R, Vr<(Ciiglle)"", [K:p—Fpll. <Br?1+|iglh, )"
PrROOF OF LEMMA 3. For all g e Wb *(R)* and 1 <i<L we have:
32) wi(r,x+c¢t)=¢;(x)+ JGi(u(s, x +c;8), u(s, x +c;s))ds
0

and for 1 <j<L:

u;(s, € +¢;8) =
=@ ;(x)+ J[(ci—cj) ¢ @+ (c;—¢;) 0)+q;(u(o, 2+ (c;—c;) s + ¢;0))] do
0

which can be written
ui(s, & +¢;8) = ¢;(@) +pP(s, x).

Choosing a = 2||¢||. in Theorem 2.1 we see there exists B, > 0 such that
for s <7< (40 ||gllo)

ly @)l < Bos(1 + llglh, ).
From this and the equality

wi(t, & +¢;7) = ¢, (x) + 7q; (@(x)) +
+ f [Gi(p), p (s, ) + G; (D (s, @), p(x)) + ¢; (P (s, ))] ds
0

we obtain:
(33) IR(—7) u(z) — [¢ + 1¢(#) 1]l < By. 721 + [|ply, )%

Let us now examine the scheme under the form (22). If C is the con-
stant defined in (25) we have:

Vr < (2CI¢ll) T — 7A(9)) M| < 2.
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From the identity
R(-1) K. ¢ = ¢ + 1A4(9) ¢ + T2 A(9) (I —7A(9)) ' ¢
and the fact that A(¢) ¢ = q(¢), we deduce:

(34) IR(—7) K. ¢ — [¢ + 79(9)]||- < By 72|95

By (33) and (34) the proof is complete.

Lemmas 3.2 and 3.3 prove that for system (1) with E, Y, Z given by
9) and X* =|| .||, the asumptions of Theorem 2.5 are satisfied. We have
then the following theorem:

THEOREM 3.1. Consider ¢ € Wb *(R)* and the scheme (21).

(i) The maximal convergence time and the maximal existence
time for (1)(56) are identical.

(ii) Let T* be this time. For all Ty < T* the scheme converges uni-
Sformly on [0, Ty] towards the solution of (1)(5):

(35) lim sup |K}N¢ —Fi(@)ll.=0
N—o>=® g0, T]

’

REMARK 3.1. In the particular case of interaction (27) the follow-
ing scheme

R(-n)u" ' =u"+1G(R(-)u"  +u")2, (R(—1)u" 1 +u")/2)

s conservative:
L L
2 Bifurtdw= 3 B [V di.
=1 =1
R R
In fact we have for xeR:

L L
lgl ,Blul”“(x + ClT)z = l;}ﬁlul"(x)z.

Hence stability is immediate and our method applies without difficul-
ty: the scheme converges towards the solution on any strip [0, T]xXR,
T>0.
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4. Approximation of semilinear systems of wave equations.

In this section, we study the convergence of a semi-implicit scheme
for the following semilinear system of wave equations:

— 2
3%’“1 - aiul =E1U Uy

36 Pley,
36 (e 82){ Fup — Py = exUp U

with compactly supported Cauchy data:

an rmm=u&@mwﬁwf

uz(0) = ug’; 3,uz(0) = vy,

This section is organized as follows: in subsection 4.1 the scheme is
introduced and we state its basic properties. These last results are ap-
plied in a following subsection to prove uniform stability and consisten-
cy. In the annex the three dimensional case owning spherically symmet-
ric data is viewed as an application of the previous case.

4.1. The scheme and its first properties.

Let us introduce first the following notations: .~ and 7 hold respect-
ively for the space and time step. o = 7/h is the C.F.L. number. For a
function U(t, x) and a given regular grid (nt, ih),cz, icz, U{" holds for
U(nt,ih) and U™ for U(nr,.). We use the translation operator
Ty: T, U(x) =U(x —h) and introduce the discrete space derivation
operator:

U +h)—U"( = -
pp UM U0 Tzl g 1T,
h h
Ur= Toa=Th gy
2h
and the discrete time derivation operator:
Un+1_Un Un_Un—l n+1 _ n-—1
T T 27

With this set of notations, the discretization of (3) consists in the follow-
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ing scheme:

88) (Ux-U™= %QE(U")(U"”+ U1y, U= U0 -0l

%

Fitted in a more usual form, the scheme (38) defines (U"*!, V**1) as
the explicit solution of the following system:

2
U= Ur+ iV + ol Ty+ T~ 2] U+ %QE(U")(U”“ +U"Y)

(39) Un+1_ Un

T

where U" 1= U" - V"

Vn+ 1_ Utn

REMARK 4.1. (39) is properly explicitly defined as long as (I —
- (72/2) Q.(U™)) is invertible.
We denote

Wn+1= (Un+1’ Vn+1) =K,(Un, Vn)’
and

fK,Wn= (UL,n+1’ VL,n+1)(T) —
2
= (U"+rV"+02[Th+ T_,-2]0",V"+ -(-I—[Th+ r.,-2]10"
T

the linear part of this scheme. Remark that, when properly defined, the
solution of this scheme owns a finite numerical propagation speed 1/o.
So, for compactly supported data W°, the solution is compactly support-
ed too, and we can use of the homogeneous Sobolev norm for these sol-
utions. K, is the approximation of the propagator F;. But, notice that
this operator does not define an evolution group, while F); does.

REMARK 4.2. From a computational viewpoint (39) leads to com-
pute at every point of a reqular grid (nt, th),.z i<z the solution of

Uin+1=2Uin_Uin_1+02[Uin—1+ in+1_2Uin]+

2
+ %QE(U”)(U{‘” +UpY.
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DISCRETE ENERGY CONSERVATION. We recall the following energy
conservation, verified by any finite energy solutions of the systems of
wave equations (8) (see [13] for a proof):

PROPOSITION 4.1. Let u=1 and W(t) e C°([0, T*[, Y*) the unique
solution of (8) with initial condition W°e Y* Then for every 0 <t <
<T*

E[W($)] = E[W*] =
= — ex(lor | + 1.0 IB) = eaClog | + 10,02 ) + [ = C*.

The essential property of our scheme is that a discrete functional
similar to the energy functional defined above is kept constant:

PRrROPOSITION 4.2. Let (W™)o<n<yu=(U", V")o<n<u @ solution of
(39), then

1 72
B = B9 = e+ Ll otz - Sl -

1 _ 2
el P+ Sl + otz B - Tl o) +

1
t3 J(u{‘uz”“)2 + (u " tug' )P

The following lemma states the basic tools used to prove this proposi-
tion. This lemma is in the spirit of a result obtained in [17] for the dis-
crete case.

LEMMA 4.1. We have the following properties:
@ 2wz, uiz) = (o),
i) 2(uz, u) = (ulP) — (22 /2)(luz [P,
(§if) (= Uoz, %) = [l [P

(V) —2(uz, upz) = (e [P — (22 /2)(lugz ),

1
W) (eURQU™MUM 1+ Upr~Y)= 5 ( j (ufud 12+ (u{”“u{‘)z)t.
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ProoF oF LEMMA 4.1. Relations (i), (ii), (v) consist in direct com-
putations, we let the demonstration to the reader.
First let us recall the following analogue of integration by part:

w(. +h)—u —<u v—v( —h)
h ’ ’ h

(40) (u, v) =< >= ~ u, vg).

So, one has just to replace (u,, v) in (40) with ( —u,z, %) in order to get
relation (iii). Now, if we replace (u,, v) in (40) with { —2u,z, u;) we get
(=203, i) = (2uz, uz;) = |luz|f — v% /2|luz|f, according to relation (i).
This last expression is an equivalent form of (iv).

PRrROOF OF PROPOSITION 4.2. Let us take the scalar product of (38)
with 2eU;. We integrate using the i), ii), v) properties, and we
obtain

1.2
ey + P ( Sloalf) )
t
2 2 v
—eo{lugalPn+ g Slogel?) )
t

1 N, n—1\2 n—1, n\2) _
+§(I(u1u2 >+ (u] uz))t—O.
This relation implies the proposition 4.2.

LINEAR STABILITY. Let us compare at this point the proposition 4.2
and the energy conservation given by the proposition 4.1: in the proposi-
tion 4.2, the character of the energy norm is played by

1 _ 72
ol + < Thuz P+ a2~ 1= Sz .

So that this remark introduces the following functional as a candidate
for the analogue of the Y*#*!l-norms:

DEFINITION 4.1. Let W= (U, V) e H*(R)". We define
IW; X7+ =

1 72 )
=|VIE + E[HUx”ﬁ +[|U; BT - —2—||Vx||,2,, with U '=U—1V.
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We state in this section the properties of such a functional and com-
pare it to the Y#*!-norms. Mainly, we obtain that for o =7/h <1 this
functional defines a norm. Remark also that it is a straightforward con-
sequence of the proposition 4.2 that the linear part of the scheme keeps
constant the functional ||. ; X® °|[%. This remains true for every real x4 and
we have

41 [ X2 WO X #| =W X4, nelN, ueR.

Hence, the linear part of the scheme defines a stable algorithm accor-
ding to the X*# norms in the o <1 case. In this case, the proposition 4.2
implies also a numerical stability property if the discrete energy is posi-
tive defined.

LEMMA 4.2. Let ueR, o<1 Then ||.; X"*|| defines a norm for
compactly supported elements of H* space. Moreover, we have for a
compactly supported W= (U, V) function

42) ColWl, < [W; X2#| < (1 + ) [W; Y+

1-o?
43) ————(|[VIE + ||U,|P) < |W; Xx=#|F < (1 + o)(||VIE + ||U,|]2
(43) 2(ng)(ll I+ 101 < IP< (1 +o)([VIE + UL
(@) lim [W; X4 [P = [W; Y#* U, o= =C.

where Cgis a positive real constant, depending only on the size of the
support of W.

Proor oF LEMMA 4.2. Consider a W = (U, V) function. It suffices to
prove the u =0 case of the Lemma 4.2. Remark first that for a real
valued function u:

ehé 2 4 sin?(h&/2)

2
% | u(&) |

17 |? = | L= e

Hence, denoting U ~!=U —1V:

Iw; x| = |72+

4 sin (h§/2 )
R 2

T2+ |T 22| V|?) dE.
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We deduce from this last expression, for any real 0 < 62,

@5) |[W;Xx=°|2= J(1 —260%02sin?(hE/2))| V|2 dE +
R

2
J’2$1n (th/Z)[ (1_ —)|U|2

R

orv- 1T
6

2
}d&.

Assigning 6% =1 /(1 + ¢%), we obtain

2
46) |[W;x>°IP= J(l - 12;702 sinz(hE/Z)) |V |2dE +
R

— ~ 1 =
(1=0)|T |+ |6V - T*|d

2 sin®(h&/2)
+j__2?__[

R

Hence, for a compactly supported W function and for o<1, (46)
shows immediately the following relations: |[W; X*°|2 =0, |W; X °|F =
=0 = W=0, and the triangular inequality |W,+ W,; X©°| <
<|Wy; X5 0| + |[We; X™°|. So that ||.; X©°| is a norm in the case
0<l. =m

Now, for W= (U, V) eY!, (46) proves, using a dominated conver-
gence argument

lim [|W; X ™ °| = |3, U|F* + [[VIP.
This is the lemma assertion (44) in the 4 =0 case. =

Now, remark that (46) implies the following relation

2 h&/2)
(ﬁVlﬁ j—fﬂfiwv|ﬁ)

Iw; X0 = 129
1+0

1-02
21 + ¢?)

\%

(VI + 1. 1P).
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We have also, due to (45), the relation

2
4 s1nh(h§/2) IU | dc .

W X’v"llzs(1+20202)[|I7|2d§+(1+ 222“
R R

So the particular setting 26%=1 /o gives us
[W; X=°IF < (1 +o)([VIP + U [P).

Hence we have proved (43) for the case u=0. =

Now, in order to prove (42), we have to compare the norm |ju, || versus
the Sobolev norm [[ul|;. So we consider ¢ € H!(R) a compactly supported
function with support

suppgpcl—a,al, a>0.

First, using the Parseval identity we obtain

Jzef)

This last estimate, using (43) shows that |[W; X™°|F < (1 + o)(|[V|? +
+||U|B) and the right inequality of (42) for the £ =0 case. =

<[1EM1@ 1= ligl.

.= |

Second, we use the following analogue of the Poincaré inequality

lpll < allg. |

in order to prove, using (43)
(VIE+ U1 < CodVIE + 11U P < ColW; X7
which is the left inequality of (42) for the u =0 case. =

42. Main result.

We state in this section our main convergence result.

THEOREM 4.1. Let o<1, and W'eY*. Then T** =T*. Further-
more for all T < T* the scheme K}y W° converges uniformly on [0, T]
towards F,W°:

" Jim  sup IF, W — KW Y =0

Now g<t<T

This theorem is the statement of the general convergence result
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(theorem 13) for the particular setting given in (10). To prove it, we veri-
fy in the next section the stability and consistence results as stated in the
theorem (13). For that aim, we recall the following definition

B, ,(A) = {We (H*(R))*, supp W compact, [W; X"#| < A} .

REMARK 4.3. Actually we prove a better result than the one stated:

we get
VI<T*,  lim oiltlgT“FtWO -KNWo X1 =0.

This has to be compared with (44). We note also that the straightfor-
ward generalization of the scheme (38) to the n dimensional case is
stable under the C.F.L condition o <1/\/n, using a similar demon-
stration. Due to this fact and from Sobolev injections we think that this
result remains true in the higher dimensions under this C.F.L. condi-
tion and with added regularity assumptions over the initial conditions
(see the annex for a result in this direction).

4.2.1. Stability. — We show in this part the stability of the scheme (39)
uniformly with respect to the X®! norms.

LEMMA 4.3. Let 0<1. For all A>0 there exists Ts(A) =C,/A*
such that for all N=1,1<n<N and 0 <t<T,(A),

sup K WO — Ky W5 XN 1| < C[We — WP; X¥V: 1]
(W2, W) e Byn, 1(AP

PrOOF OF LEMMA 4.3. Before proving this lemma, we shows the fol-
lowing stability result

48 forall1<sm<N

and 0 <t<T,4), sup |KJWO XN 1| <2|wo; X1,
WoeByy, 1(4)
To prove this relation, we study first a one step in time 7 =1#/N of our
scheme, for any data Wi= (U%, V') belonging to B, ;(A). We note
Witl= (U**!, Vitl) = K, W' i <n, which solves, according to (39), the
equation

Witl= X Wi+T(z2H¢, tHY),
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where H' stands for the two components vector valued function
3Q.(UNU* + U'~1). Now, we estimate the X™! norm of Wi+!:

1: according to (41) we have || X, W?; X1 =|[W?; X™ 1.

2: going back to the expression of the X®# norms, we com-
pute

I(z2H, <H); X7 P = |eH .
So we obtain
49) [Witt; x| < Wi X2 + o5 ;.

Using the algebra’s properties of the H#(R) spaces, u>1/2, and the
Lemma 4.2, we estimate the non linear part with:

IH L < Ui, + U+ HpUHE <
SC(Wirt X= | + W Xt [we X5 P,
So we include these estimates in (49) in order to obtain:

(1+Crw?; X1 P)

(50) Wit Xo | < |wi X! . :
n <1 0| o e

So, hypothesizing W'e B, ;(4;), we get WieB, ;(4;,,), with A;, ;=
=A;(1+ CrA}) /(1 — CtA?). Thus, we obtain recursively from this last
point that Ay <2A,, provided that t<1/16CAE. =

We turn out to the demonstration to the stability lemma. First choose
data W} = (U;, Vi) and W§ = (U}, V§) belonging to B, ;(A). We denote
Witl= (Ui, Vit =K. W;, Hi=¥U;*'+U;™") Q.(Uj), and the
same with the subscript b. We denote in the following W= W;—
- Wi, H*= H} — H{. Now, we estimate the X ! norm of Wi*!, with 7 =
={/N, and we obtain, as for (49):

(51) Iwest; XoH < W Xl + dlH L
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We factorize H® in the following way:

(62) HJ—H§=Z(Qs(UéHQe(Uﬁ))(U‘i”—U8“+U3_1—Uﬁ’1)+

1 ) ) . . . .
+ Z(Qe(Ué) —QUINU ' + U~ + Ug 1+ U™,

This factorization allows us to estimate:
a1y < OrlIWis X7+ i X5 X X0+ [ X)),
Now, suppose that tA2<(C, and consider i<N. We estimate
Cr(||Wi; X= 2+ |W§; X™!|P) < C/N, using (3.2). So we get inductively
W25 X7 < eClwo; X7 m
4.2.2. Consistency. — We show in this part the consistency of the

scheme (39). This consistency is stated uniformly according to Y2 space,
locally uniformly for data belonging to the Y* space:

LEMMA 44. Let 0<1. For every WeY?, and v < T,(|W°; Y2|)
KW —F, W Y2|| < C®|[W®; V4|1 + WO Y2 |).

PROOF OF LEMMA 4.4. In this section, * is the convolution operator
relatively to the space variable. Moreover, for a bounded set 2, y o(x) is
the truncated function associated to £ and we denote the function
¢ o(x) = x o /mes ().

First, remark that the condition 7 < T,(||W?; X* ||) allows us to use
the propositions 2.3, and 4.3.

We remind now the following integral property of the solution of (8):
let (U, V)(t) = F,W?°, given by the Lemma 2.2 for data (U°, V°) belong-
ing to Y, then W(z) solves the integral equation given by the Duhamel
principle:

1
5 Jemu
FWo=gwos |

2V2,]

where ‘TL'WO =T(%[T1 + T—t] UO + %X[—z, t]%VO; %[T‘t + T—r] VO + %[T—1 -
—T.,1 3, U°) holds for the free wave equation, and 4, , = {(¢, y)/t>0,t+
+ |*—y| <|7|}, the wave cone issued from a (z,x) point, A4, ,=

Q(U)U
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= {(t, y)/t>0,t+ |x —y| = ||} the upper edge of this cone. So we have
to estimate the Y2 norms of the difference

KW' -F W=

—(U1+U I)QE(U")—— jQ(U)U
=X W' -F W+

E(U1+U—1)Qe u

Let us hold first with the linear part. Using the Fourier transform,
we get

FW - X W=
202 2n2
(2 sin ;E/Z 447 sin 15/20) 1 ( sinté 1) N
) T 72 T\ 1€ (UO)
=T ~ .
£ . 40®  , T ) sin?7&/2 v
—sint§ — ——sin®* — -2
( 72 ¢ 78 20 72
The following functions are uniformly bounded as 7 tends to zero
2 2 -1
£ |§|"2(2 sin® t&/2 447 sin' 15/20); |§| (smr{;‘ 1)
72 72 T 173

2 . 5
§—|§| 3[ gsmr.f;— (; sirﬁﬁ]; £ — 2|2 sin r§/2.
T 20 2

So we can estimate
9% W — FW?; Y2|| < Co2(WO; Y| < Co? W Y.
For the nonlinear part, we estimate first roughly, using the proposi-
tion 2.3 iii),

|5 f Q) U| <cet sup ) Ul < cetipwe; 2

0<s<rt

and we have also

[Q.(UXU* + UM, < CIIW?; Y2 |W°; Y3 .

Now let us hold with the second non linear estimate. We estimate its H'
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norm by
1
a,<Cr sup (|Q.(U)U- EQE(UO)(U1 +U™Y “ .
0<s=<rt 1
So
l]— Uﬁ Uﬂ Uﬂ 2 0 -1
a,éCﬂ( sup | QU U-QLU” | QU - ) || )
0sss<t T 1
=Cr%(af + af).
We estimate, using the factorization (52),
U-0U°

af <C(JU°+ sup 1F) sup

0<s<rt 0<s<rt

-
We estimate sup ||U - U° /4, < C|U; C*([0, 7}, HY)||<C sup U1l

0<s<rt 0<s<rt

This last estimate comes from the property of the continuous problem.
So we estimate, using the proposition 2.3 iii),

af <CIW°; Y*F[W®; Y2

For ag, we estimate first af < Ctl|Q.(U")|, [(2U° - U - U 1) /27%||;, =
= Ctl|Q. (U U], As 7|Q.(UN, < CU|f < Ce|W?; Y F<C, we
have af < C||US|,. Now, using the expression of the scheme (38), we
estimate

a3 <ClUR L <CAUZ L + T [BAT I+ 1T D) < AT lls + W5 Y2(F).

Blending all of these partial results and using the Sobolev injections, we
obtain

K. W° - F,.W°; V2| < Ce?||W°; Y41 +|W°; Y2|F). m

5. Numerical experiments.

5.1. The first order system.

In all the experiments presented here we have fixed 6 =1/2. We
present three different tests on (1). First we consider a simple model of
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discrete Boltzmann equation, the Broadwell system:
Bty — By Uy = Uy — Uy Ug
(63) Os Up = —ug + Uy U
Byus + 3, Ug = UL — Uy Us.
It is well known that for positive data in L,y the solution of the Cauchy
problem is global in time. But one can also construct exact explosive sol-

utions by a solitary wave method, see [2] and references therein. We look
for a solution of form:

u(t, €) = ¢(x —ct). 4

were A e R3 is constant and ce] — o, —1[U]+1, + o[. In our case we
obtain:

Ai==-af(c+1), Ax=a/c, Ag=—af(c—1)

where a= —c%(c?-1), and then ¢ is solution of the blowing up
equation
(54) o' =2

By truncation and regularization one obtains a smooth compactly sup-
ported initial condition which is equal to ¢. 4 on a bounded interval, so
that the solution of the problem is ¢(x — ct). 4 in the associated depen-
dance domain. In this particular case the determinant of the matrix I —
—tA(u™(x)) in (22) is 1 + h(u, + 2uy + u3)/2 where one recognizes the
density w, + 2uy + u3. Let us take as a blow up criterion:

Uy + 2uy + ug= — 2/h .
If u is the exact solution ¢. A then this condition reads as:
(A1 +2,+A3) p(x—cT) = —2/h.

As ¢ = (¢! - (x—cT))™), this criterion furnishes the following blow up
value:

x—cT=¢5+he
instead of the theoretical x — ¢T = ¢;'. Consequently such a criterion
provides an error of order % at least.

Figures 1 and 2 are the comparison between exact and numerical
density u; + 2uy + ug at time T = 2. Here ¢ =2, h = 0.02. In figure 1 we
focus on the smooth part of the solution far from the blow up point. The
L* error has been computed to be less than 1% in this zone. In fig. 2 we
show the blow up zone. u; + 2uy + ug = — 2/h for x = — 5.66 while the
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Fig. 1. — Broadwell’s equations: smooth part of the solution at 7'=2.
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Fig. 2. - Broadwell’s equations

: Stiff part of the solution at 7'=2.
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theoretical blow up is at « = — 5.7. We find the computed value = —
— 5.58, that is an error of 2%.
Let us now study the blow up for:
Sy =u
(65) { 1t = e , w0)=¢ep.
Oyt + 8, Up = Ug

There exists a smooth compactly supported function ¢ such that for all
£ >0 the solution of (55) blows up in finite time 7'*. Moreover there
exists two constants C;, C, such that [2]:

C,<e?T*<C,.
If ¢ is chosen like in [2] with support in [-1,1], we know that
1-e—e2<e?T*<23+¢2.
Taking the blow up criterion:
T} = min {t,, max (u;, uz) = h "'}

we obtain the following table:

€ e2T*, h=0.1 | 2T¥, h=0.2
1 |1 1.08

271 10.82 0.84

272 1 0.89 091

273 1099 1.

274 11.05 1.06

27% | 1.09 1.09

For the same problem (e = 1) we represent the space time isolines of ,
and u,. The maximal value for the isolines has been taken to 12.5 while
h = 0.02. This process allows us to exhibit an approximate maximal exis-
tence domain and a blow up curve of the solution (figures 3 and 4).
The last test is concerned with global solutions. Figures 5 and 6 rep-
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Fig. 8. — Space time isolines and blow up curve for the solution of a 2 x 2 system:
first component.

resent the space time isolines of the solutions %, and u, of the conserva-
tive system

(56) w(0) = ¢

{ atul = - u1u2
atu2 + aa:u2 = u12

with the same initial data as above and the same time step. This system
arises in nonlinear optics or plasmas physics. We observe a strong inter-
action zone out of which the waves propagate linearly.

5.2. The system of wave equations.

We present in this part computed solutions of P(e,, £;) systems,
using the schemes (39), (63), and the remark (4.2).

We have chosen for tests a C.F.L constant ¢ equal to 3. We compute
the solution over regular dichotomous grids with shape V;=
= (t], ;)3 ShSEY 1= (g2, k2‘i)8§§?§2%’++11 that mesh both the domains

Fig. 4. — Space time isolines and blow up curve for the solution of a 2 x 2 system:
second component.



274 D. Aregba-Driollet - J.-M. Mercier

i

Fig. 5. — Space time isolines for the solution of a 2 X 2 conservative system: first
component.

(t, x) [0, 1]1x [0, 2] for 1-D computations or (¢, r) e [0, 1] X B(0, 2)
for the spherical symmetric data 3-D case, where B(0, 1) holds for the
unit ball. When properly defined, the computed solution on such grids is
noted ((u,)¥, (u2)*)S¥5571. We need to compute the solution in a bound-
ed domain, so we use Dirichlet condition at boundaries (¢/, 0), < j<z and
t, 2) < j<2i- The support of data has been chosen in order to ensure,
using the numerical propagation speed of our scheme, that these bound-
ary Dirichlet conditions do not perturb the solution.

Because we would like to have some indications on the time existence
of solutions of P(+1, —1), we define a numerical explosion criteria.
It seems natural to define

) 1
T*i=inf{t"/ sup v2[(uf;?+ (us ;1> =1,
0<js2i+! 2

Fig. 6. — Space time isolines for the solution of a 2 x 2 conservative system: second
component.
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75 -

0

1.5

Fig. 7. - A one dimensional blow up cse of P(+1, +1).

since for lower times, the solution can be explicitly deduced from
the expression of our scheme (39).

The solution is represented on a three dimensional (x, ¢, u(t, x))
graphics for pictures 7 and 8.

We illustrate in picture 7 the behavior of the solution in a blow-up
case of the P(+1, +1) system in one dimension for which we know that
E[W°] >0 = T*< + o ([13] and related bibliography). So we choose
large enough initial data that lead to a blow up solution for the continu-
ous problem in order to check that our explosion criteria is able to detect
a finite existence time. For this computation we have chosen the same in-
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0

1.5

Fig. 8. - u solution of P(+1, —1) in the one dimensional case.

itial data for % and v, so that the solution is a particular case of the scalar
semilinear wave equation {?u — 2% = +u%3}. Numerical results seem
to show that (T* ?);.n converges toward the blow up time of the continu-
ous problem 7*. On picture 7, the numerical finite propagation speed of
the solution is used to compute the solution after the blow up time.

The figure 8 is a computed solution of the system P(+1, —1) in the
one dimensional case. For this computation and also for the next one, we
have chosen the same initial data for «; and u,, but only the u, solution is
showed here. This because the u, solution has an heavy oscillatory be-
havior that is hard to present with such a graphic. Interpretation of
these oscillations are provided if one think that u, satisfies a Klein Gor-
don type equation with variable mass (u;)%.
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2500 +
2000 |
1500 -

1000 +

0

1

Fig. 9. — Spherically symmetric % solution of P(+1, —1) in the three dimensio-
nal case.

For these computations, it seems that (T* *);. goes toward infinity.
So we believe that for this case, every smooth enough data leads to de-
fine a global solution. Furthermore, this picture seems to show that the
solution w, stabilize itself linearly over large time.

In figure 9, we present a spherically symmetrical « solution of P(+
+1, —1) in the three dimensional case owning spherically symmetric
data, for which the numerical study is overviewed in the annex of this pa-
per. The solution is represented on a three dimensional (r, t, u,(t, 7))
graphics, where r denote the spherical variable. We have chosen a
«large» initial data in order to illustrate the behavior of heavily interact-
ing solutions of the P(+1, —1) system. For that aim, we use an adaptive
mesher because for such initial data we have recorded finite blow up
time on every regular grid V' allowed by our computing capability. This
adaptive mesher has the particularity to keep the C.F.L ratio constant
throughout the computation. We refer to ([13]) for a description of the
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one dimensional principle of this mesher, and indicate that a multi-di-
mensional version is available ([15]).

We haven’t recorded any explosion for solutions computed with this
adaptive mesher. So we believe that the three dimensional case still gen-
erate an unique globally defined solution what large ever the initial data
are. Furthermore, this picture seems to show that the solution u stabilize
itself to a non zero constant.

6. Conclusion and remarks.

The approach proposed in [7] appears to be well adapted to the nu-
merical study of some properties of semilinear hyperbolic systems. We
analyze in a similar manner the continuous problem and the approximat-
ed one: the local existence time is like the local stability one, we retrieve
for the discretization the continuous dependance on data property and
we are able to define a maximal convergence time which is proved to co-
incide with the maximal existence time of the continuous solution.We
find for two distinct applications, a first order and a second order sys-
tem, a discretization and a functional setting for this study. We want to
point out that for our wave equation systems, we include the case where
the natural space in which the evolution group acts is unstable for the
discretization operator. For this problem, we had to introduce a specific
norm.In fact, we own now a local convergence theory, insuring us that
the scheme converges as long as the continuous solution exists. More-
over for the schemes we construct, we are able to define a numerical
blow up time which appears to be coherent with the theoritical known re-
sults, and also to define numerical blow up curves. It would be of interest
to prove the convergence of these numerical blow up times towards the
theoretical one.

7. Annex.

The three dimensional case with spherically symmetric data. — We
overview in this part the numerical study devoted to the three dimen-
sional version of (36):

Fuy — Auy = €U uZ
(57 P(sl,ez){ T
Fug — Aup = €3up uf
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for Cauchy data {u;(0) =ul; 8,u;(0) =0, u(0) =ug; 3,us(0) =vJ}
compactly supported and spherically symmetric. We assert in this case a
theorem analogous to Theorem 4 for the three-dimensional case. For
that aim, we study our systems in an equivalent form in the spirit of
([18]). We show that this equivalent form allows to deal with a C.F.L.
condition o < 1, that seems to us better that the usual C.F.L. condition
o<1 /\/§ needed to study the three dimensional case ([17], [6]).

First, let us give some notations: we denote with H#(R®) the closed
subspace of H*(R®) of spherically symmetric functions. We denote
H“(R) the half Sobolev space made of even functions that belong to
H*R), and Y*=H‘xH‘"'(R). Let n®)=|x|=[(x)*+ (x)*+
+ (23)%12. For a function u € H¥(R?), we denote u,.(r(x)) = u(x), and con-
sider it as an odd function of the real variable 7. In the sequel, 4, = &% +
+ (2/r) 3, is the Laplacian expressed in polar coordinates.

We recall also the following property of the Laplacian operating on
spherically symmetric functions:

(68) ) Au(x) = (8 (ru,))((x)) .

The equivalent problem. — A direct computation on the (57) using the
property of commutation (58) leads formally to the following one dimen-
sional system, with w; =ru; ,, i=1, 2:

BEw, — Bwy = wlwg
(59) P.(ey, €2)
€
Fw, — Fwy = '—szwlz
r

with even Cauchy data. In the following lemma, we provide the basic
tools used in this annex, studying the mapping R: u(x) — ru,(r).

LEMMA 7.1. Let u=0 an integer. Let us consider H}(R3) and
H*(R,) with the norms

llu; H*(R®)|E = - LS a2 LRy

T asu

llv; H*(R)|P = 2 62 v; LER)|P.

1) R: u(x) = ru,(r) realizes an isometrical bijection between

H{(RY) and H*(R,).
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ii) We have the following estimations:
6 | CUARLS | < 2@l weR @, uz2.
r

61) ” w‘w2w2'Hﬂ(R>||sc [T |w; H*®|, weB®),

b
r2 i=1,2,3

i=1,2,8,u=2.

Such a lemma must be known, but we haven’t find a precise refer-
ence.We let for short its demonstration. Now suppose that (u;, ;) €
eC’([0, T[, H*(R3)) is a solution of (57), with u = 2. According to the
lemma, (w;, wy) = R(uy, us) € C°([0, T[, H*(R)) satisfy (59) in a strong
meaning. Conversely, if (w;, w,) € C°([0, TT, H*(R)) satisfies (59), then
(uy, ug) = R Y (wy, wp) € C°([0, T, H#(R2)) satisfy (57). So these prob-
lems are equivalent.

The scheme, main result. — First we express the equivalent Hamilto-
nian formulation of (59), as in (8):

d (U
(62) P.(eyq, Ez)l[a(v)=

14
i (35 U+ Q. (1) U); U(0) =" (Rup, Ru), V(O) =" (Ro?, R .

. 1 [¢e 1 ugz 0 .
with @, .(U) = — NE We denote in the sequel F; , the evo-
r

Eo Uy
lution group linked to the problem (62).

Considering data W™ = (U™, V"), we use the following scheme in or-
der to solve (62), which is similar to (38):

(63) [Ufz”—UZ%=%Qe,r(U”)(U””+U""1)

where U '=U"—tV".
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This scheme defines W"*! = (U"*!, V**!) as the solution of:

2
U =Ur+ V" + 0T+ T, — 21U+ %QM(U”)(U”“ +U

(64) Un+ 1_ Un

T

Vn+1 — Utn.
Remark here that the solution of this scheme is even and explicitly de-
fined as long as (1 — (¢%/2) Q., ,(U™)) is invertible. This is achieved for
even data W"eX™#, u =2, and small enough 7, using the estimation
(60) of the lemma 7.1 and (42). We denote in this case W"*!l=
=(U"*, Vrt)y =K, (W") the defined algorithm.

For numerical application, it is enough to consider ar homogeneous
Dirichlet condition at = 0 for W"*! in order to compute the solution of
(64) for r=0.

The analogous of the energy conservation proposition 4.2 is

Let (W™)y<n<u @ solution of (64), then

1 72
BAW) = B = = ey {for I+ SO0t P+ o2t )= g ) -

1 2
~ea{ S Uhuto P+ o 2= S ) +

1 J’ [ ug ™1 + (u ™ ug')?1(r)
+ — dr.
2 r?
R
We state now our main result, which is similar to the Theorem 4.1
with an added hypothesis of regularity over the initial conditions.

THEOREM 7.1. Let o<1, and W'e Y. Then T** =T*. Further-

more
VT < T*, I}im sup |F, .W°—KN, W% X2 =0.
—®0st<sT

The demonstration of this result follows exactly the same line that
the Theorem 4.1: we show first stability for data that belong to {W=
= (U, V) even, |W; X" 2| < A} for a stability time Ts(4). Then we prove
consistency for data in Y°. The demonstrations are the same as for the
Lemmas 4.4 and 4.3 except that the relation (61) is used to estimate non
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linear terms. This allows us to prove local and global convergence of the
scheme towards the solution of (59).

REFERENCES

[1] D. AREGBA-DRIOLLET, The blow up curve for a semilinear hyperbolic sys-
tem, preprint 95008 Mathématiques Appliquées de Bordeaux (1995).

[2] D. AREGBA-DRIOLLET - B. HANOUZET, Cauchy problem for one-dimensional
semilinear hyperbolic systems: global existence, blow up, J. Differential
Equations, 125 (1996), pp. 1-26.

[3] J. M. Bony, Existence globale & données de pour les modéles discrets de l'é-
quation de Boltzmann, Comm. in partial differential equations, 16 (1991).

[4] L. A. CAFFARELLI - A. FRIEDMAN, The blow-up boundary for nonlinear wave
equations, Trans. Amer. Math. Soc., 297 (1986), pp. 223-241.

[56] R. E. CAFLISCH - 8. JIN - G. Russo, Uniformly accurate schemes for hyper-
bolic systems with relaxation. Technical report, Universita dell’Aquila
(1994).

[6] F. CASTILLO-ARANGUREN - H. JUAREZ-VALENCIA - A. NICOLAS-CARRIZOSA,
Theoritical and numerical aspects of some semilinear hyperbolic problems,
Calcolo (1994), pp. 337-354.

[7] A. J. CHORIN - T. Jr. HUGUES - M. F. MCCRACKEN - J. E. MARSDEN, Product
Sformulas and numerical algorithms, CPAM, 31 (1978), p. 205-256.

[8] D. DRIOLLET - B. HANOUZET, Systémes hyperboliques semi-linéaires conser-
vatifs 1-d, C.R. Acad. Sc. Paris, 307, serie I (1988), pp. 231-234.

[9] E. GABETTA - L. PARESCHI, Approximating the Broadwell model in a strip,
Math. Models and Methods in Appl. Sci., 2 (1992), pp. 1-19.

[10] T. KaTo, Nonlinear equations of evolution in banach spaces, Proc. Sympos.
Pure Math., 45 (2) (1986), pp. 9-23.

[11] D. J. KAuP - A. REIMAN - A. BERS, Space-time evolution of nonlinear three-
wave interaction. 1. interaction in a homogeneous medium, Reviews of
Modern Physics, 51 (1979).

[12] A. MAJDA, Compressible fluid flow and systems of conservation laws in sev-
eral space variables, Springer Verlag, New York (1984).

[13] J.-M. MERCIER, Sur des Systémes d’équations des ondes semi-linéaires.
PhD thesis, université Bordeaux, 1 (1996).

[14] J.-M. MERCIER, Global existence and long time estimation for an integro-
differential system, Preprint dell’ universita di Pisa 2.275.1047, to be pub-
lished in Ricerche di Matematica (1997).

[15] J. M. MERCIER, Note over a multigrid adaptive mesh refinement technique
for hyperbolic problems, preprint SISSA 53/98/M (1998).

[16] R. NATALINI - B. RUBINO, A discrete approximation for hyperbolic systems
with quadratic interaction term, Comm. Appl. Nonlinear Anal., 3 (1996),
pp. 1-21.



Convergence of numerical algorithms ete. 283

[17]1 Kuo PEN-YU - L. VAsSQUEZ, Numerical solution of a nonlinear wave equa-
tion in polar coordinates, Appl. Math. Comput., 14 (1984), pp. 313-329.

[18] W.-A. STRAUSS - L. VASQUEZ, Numerical solution of a non-linear equation,
J. Comput. Phys., 28 (1978), pp. 271-278.

[19] L. TARTAR, Some existence theorems for semilinear hyperbolic systems in
one space variable, Technical Report 2164, University of Wisconsin-Madison
(1981).

[20] R. TEMAM, Sur la résolution exacte et approchée dun probléme hyper-
bolique non-linéaire de T. Carleman, Arch. Rational Mech. Anal., 35 (1969),
pp. 351-362.

Manoscritto pervenuto in redazione il 15 marzo 1998.



