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The Branch of Positive Solutions

to a Semilinear Elliptic Equation on RN.

H. JEANJEAN - M. LUCIA - C. A. STUART(*)

ABSTRACT - For a large class of functions f, we consider the nonlinear elliptic
eigenvalue problem

If the lowest eigenvalue of the linearization lies below the essential spectrum,
it is known [6] that a global branch, e, of solutions bifurcates at this value of A.
The main results of the present paper give properties of f which enable us to
provide explicit lower bounds for u) E el. Our approach is based
on the construction of supersolutions which enable us to refine the alternative
established in [6] concerning the global behaviour of e.

1. Introduction.

We consider a nonlinear elliptic eigenvalue problem of the form

where f: R~ x R - R is a mapping satisfying

(*) Indirizzo degli AA.: D6partement de Math6matiques, EPFL, CH-1015
Lausanne, Switzerland.



230

(H2) the function f satisfies the conditions of Caratheodory,

(H3) f(x, -) e C  ( R) for all x ERN,
for all compact Kc R, the ): E are

equicontinuous and is bounded on R~ x K,

(H4) 32f(-, 0) is bounded on R~. We set a : = liminf a2 f (x , 0).
|x| - oo

For each C ; 0, we introduce the following real number,

We set

and we make the following hypothesis

REMARKS. 1. When we shall consider the mapping (x, s) -

- f (x, s)/s, we have always in mind the following one

2. We have f3 ~ a.

For m E N and p &#x3E; 1, we adopt the standard notation [2] for the
Sobolev space Fixing a value p e n (1, oo) we set
X = and we recall that the condition lim u(x) = 0 is satis-
fied for all u E X. 

We are interested in pairs (A, u) E R x X which are solutions of the
problem (1.1) and our aim is to obtain some global properties of the
branch of solutions which bifurcates from the lowest eigenvalue of the
linearization. Similar problems have been investigated under various as-
sumptions on , f in [3], [1] and [9]. Our approach is based essentially on the
results obtained in [6]. In this previous paper we studied the problem
(1.1) without the condition u(x) &#x3E; 0 for all x E We showed the exis-
tence of global branches of non trivial solutions bifurcating from a trivial
solution (~, o , 0) in R x X, by using the degree theory for proper C 2 Fred-
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holm mappings developped by Fitzpatrick, Pejsachowicz and Rabier in
[4]. One of the branches bifurcates from (~l , 0) if ~l  f3 where

and this branch has a connected component of solutions to the problem
(1.1).

More precisely, denote by (I ) the problem (1.1) but with the condition
u &#x3E; 0 replaced by u*0 and let

On 8 U {(~, 0 ) } consider the topology inherited from R x X and let ~,,
be the connected component of S U { (~l , 0 ) } containing (ll , 0).

Let

and

In Theorem 5.1 of [6], we obtain the following result which is in the spirit
of the classic alternative established by Rabinowitz [8].

THEOREM 1.1. Let f be a mapping satisfying the hypotheses (Hl) to
(H5) and suppose that A  f3. If (A, u) E eA B1 (~1, 0 ) ~ then u has no ze-
ros. The component eA has at least one of the following properties..

1. CA is unbounded in R x X,

2. sup A= ~3.
(A, u) E ~,~

Both e;t and ~~ are non-empty and connected. Furthermore eA = e;t U
u e~ U f (A, 0)1.

We can derive the same result for CA’.

COROLLARY 1.1. Under the same hypotheses as Theorem 1.1, the

component ~~ has at least one of the following properties

1. is unbounded in IE~ x X,
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PROOF. By (H1), C~={(A, -~)~,~)~(~} and so this follows

from Theorem 1.1.

In particular, Corollary 1.1 ensures the existence of solutions of prob-
lem (1.1) and, of course, u ) E ~~ ~ ~ ~i. The main purpose of
this paper is to formulate conditions under which a better lower bound
for sup ~~, ~ (~,, u) E can be given. In Section 2 we begin by recalling
some useful results from [6] and we show how upper bounds for

sup (£ I ( , u) E can be obtained.
The main ingredient in our approach to establishing lower bounds for

sup (£ [ (£, involves the construction of a supersolution of the
problem (1.1) and this can be accomplished in various ways depending on
the properties of the function f.

To describe our results we introduce the following notations.

The first result in Section 3 shows that y ~ ~, ~ a for all (~, , 
Then supposing that

we show that Sb’ is bounded in R x X for any b  v. Referring to Corol-
lary 1.1, we see that ( (~, , u) E provided that (HI) to (H6)
are satisfied and l1.  ~3. It is easy to find functions f satisfying all these
conditions for which v and in this case the trivial estimate

sup f A (~,, u) E eQ ) * ~l is sharpened. However the lower bound v is not
always optimal and it is equally easy to find cases where v  1. To deal
with these situations, where the parameter v does not provide an ade- /

quate lower bound for ~c) E ~~ }, we turn to the construction
of supersolutions.
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DEFINITION. A pair (b, is a supersolution of problem (1.1) if

In Section 4 we show that if an appropriate supersolution ( b , ~) of
(1.1) exists then I ( , u ) E e;i } ~ b.

The construction of such supersolutions is undertaken in Section 5
where three different methods are used depending on the properties of
, f. For a function f which has the simple form,

where q ; 0 on R~ and inf r(s) &#x3E; - 00, the differences between these
s;0

three cases can be roughly described as follows; a more thorough discus-
sion of this kind of example being given in Section 6.

Let = 0 ~. The first two constructions require the
condition that p(r) + for all Moreover if

lim infr(s) = oo, we must assume that p(x) &#x3E; B for all x E 3Z. This condi-
s - oo

tion is not necessary for the third construction which however only deals
with the cases where lim r( s ) = m .

The choice of the construction also depends on the characteristics of
the sets Z and ,S~ = Z E I p(x)  p 1. If Q is an unbounded subset
of R~, only the first construction can be used. The second construction
requires S~ to be bounded whereas Z must be bounded for the third one.
However these constructions may give a better result in the sense that
they may provide a supersolution for a larger value of b, and hence, by
Theorem 4.1, a better lower bound for sup I A (~,, u) E e;i }. The bounds
obtained by the three constructions are in Theorems 5.2, 5.3 and 5.4

respectively.

REMARK. In the course of this work the authors of [4] have kindly in-
formed us that they can now define a similar degree for proper C 1 Fred-
holm maps. In response to this development, we observe in [6] that the
existence of such a degree means that Theorem 1.1 and Corollary 1.1 re-
main valid when (H3) is replaced by

(H3)’ f ( x , ~ ) E C 1 (R) for almost all x E R~, and for every compact K c R,
the ): are equicontinuous.
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This observation also holds for all of the results in the present
paper.

2. Preliminaries.

We choose p E (NI2, oo) n (1, 00), and we set

with the following norm,

where u is a multi-index is the usual norm on 
We recall the following properties of the space X (see [2]).

1. X 4 continuously.

Moreover, the injection W2, P(BR) c-4 C(BR) is completely continuous
for every ball BR = (r E RN Ilxl I  RI.

2. X continuously, for every p £ 
3. lim u( x ) = 0 for all u E X.

Ixl-+ 00

LEMMA 2.1. Let f be a mapping which satisfies the hypotheses (Hl)
to (H4) and let K be a compact subset of R Then,

1. a2 f is bounded on x K.

2. There exists a constant C = C(K) such that for all

(x, Sl), (x, S2) ERN x K we have

3. Let u E X There exists a constant C = C(u) such that

We have denoted in the introduction

is a solution to (1)} .
As a particuliar case of Theorem 3.2 of [6], we have the following
result.
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THEOREM 2.1. Let f be a mapping satisfying the hypotheses (Hl) to
(H5). Let E be a subset of S and suppose that there exist C &#x3E; 0 and k  f3
such that for all (A, u) E E,

Then, there exist positive constants a and D such that for all

Let us complete these preliminary observations by showing how up-
per bounds for u ) can be obtained.

If (~, , u ) E 8+, it follows easily from Theorem 2.1 that u E H 1 ( I~.N ) and
it can be regarded as a positive solution of the linear eigenvalue
problem

Consequently A is characterised by

Setting m( x ) = s ) ~s ~, we obtain the estimate ~, £ I where
s&#x3E;0

Clearly m(x) &#x3E; lim 0 f(x, s) Is = 32 f(X, 0 ) for all x ERN and A.

As a first special case, we note that, if s -1 f (x, s)  32 f ( x , 0 ) for all
and s &#x3E; 0, then m( x ) = 82f(x,0) on RN and X=A. Thus

sup I Â I (A, u ) E ~l in this case.

More generally, if ,S~ is a bounded open set in RN such that

s -If(x, s) ~ 32f(X, 0) for all x E S~ and s &#x3E; 0, then m(x) = a2 f(x, 0) on Q
Â 1 ( S~ ) where

is the first eigenvalue of the Dirichlet problem for
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3. Properties of the positive solutions.

In this section, the results deal with all positive solutions of (1.1). We
will use the following notations

is a solution to (1.1)},

We denote by (respectively ~ro2 ) the natural projection of R x X on
R (respectively on X).

First, we show that (8+ ) is bounded below by the constant y ap-
pearing in (H6).

REMARK. The hypothesis (H6) implies (H5) since - -  y ~ /3.

THEOREM 3.1. Let the hypotheses (Hl) to (H6) be satisfied. Then

PROOF. For (~,, u) E ,S + we have that ~,  f3, and so as in the discus-
sion following Theorem 2.1 we have

THEOREM 3.2. Let f be a mapping satisfying (Hl) to (H5). Let E be
a subset of lR x X such that E c S and that there exist b1  b2 such
that

Then, the following properties acre equivalent

1. P2(E) is bounded in X.

2. P2 (E) is bounded in L 00.
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3. There exists q E X such that for all (À, u) E E

PROOF. (1)=&#x3E;(2).

This follows from the continuous injection X ~-, L °° 

(2) ~ (3) 
’

By hypothesis, there exists a constant C such that for all (~, , u) E E,

Since £ £ b2  ~3, it follows from Theorem 2.1 that there exist constants
a, D &#x3E; 0 such that

Hence we can choose 17 to be any element of X such that De -alxl
on IRN.

’ 

Let (~, , u) E E. Thus,

or equivalently

Now, it follows from the hypotheses and Lemma 2.1 that there exists a
constant C = C( 11/ 100) such that if(x, s) ~ C( ~7 ~ ~ ) ~ s ~ I for all (x, s) E

Hence

and the set

is bounded in 

Since, (-LI + 1) is an isomorphism of X onto we have that

P2(E) is bounded in X.

Combining Theorem 3.1 and Theorem 3.2, we immediately get
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COROLLARY 3.1. Let f be a mapping satisfying (Hl) to (H6) and
b  f3. Then, the following properties are equivalent.

1. sb is bounded in IE~ x X.

2. sb is bounded in IE~ x L 00.

3. There exists t7 E X such that for all (A, u) E sb

To formulate the last theorem of this section, we introduce the fol-
lowing real number,

REMARK. We have

THEOREM 3.3. Let f be a mapping satisfying (Hl) to (H6). Then, sb
is bounded in R x X for all b  v.

PROOF. Let b  v. Since v ~ ~3, by Theorem 3.1 and Corollary 3.1 it is
enough to prove that ~2 ( sb ) is bounded in L 00 (RN).

Choose e &#x3E; 0 such 
There exists Ro &#x3E; 0 such that

Let (A, u) E st, we prove

Set Q = ~x E R~ &#x3E; Ro ~ and suppose that Q # 0. Since u is continu-
ous, Q is open and since lim u(x) = 0, we have that is bounded.

Moreover, we have

and u(x) = Ro on aS~.
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Then, from the weak maximum principle (see [5]), it follows that

i.e. u(x) ~ Ro on S2. This is a contradiction to the definition of Q and so
S2-0,

COROLLARY 3.3. Let f be a mapping satisfying (Hl) to (H6), let v be
defined by (3.19) and A  f3. Then

PROOF. If we suppose that

it then follows from Theorem 3.3 that C 1 is bounded in R x X, and this is
a contradiction with Corollary 1.1.

4. Supersolutions and C 1 .

In this section we show how the existence of a supersolution, as de-
fined in the introduction, can be used to estimate sup PI ( C~ ).

REMARKS.

1. If ( b , ~) is a supersolution of the problem ( 1.1 ), then (A, ~) is
also a supersolution for all ~, ~ b.

2. If ( b , W) is a supersolution of the problem (1.1), then
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Hence, using (H4), we get

THEOREM 4.1. Let (Hl) to (H6) be satisfied and A  f3. Suppose
that there exists a supersolution (b, fJI) of the problem (1.1) such

that

Then

REMARK. If a = lim 0 ), then by the previous remark point

2, necessarily any supersolution ( b , satisfies b  a - d. In this case all

supersolutions of problem (1) fulfil the hypotheses of Theorem 4.1.

PROOF. Seeking a contradiction, we suppose that 
E and we show then that in this case for all (~,, u) E e1 , we
have

So by Corollary 3.1, C 1 is bounded in R x X and this contradicts Corol-
lary 1.1.

Let

We show that D is not empty, is closed and open in e;i 0)},
and hence that D = CQ 0)} since C£ 0)} is connected.

1. D is not empty, because ( , 0) E CQ 0)}.
2. D is closed in eA’ -

Suppose that (A, u) E eo 0)) and that there is a sequence

I c D such that (~, n, un ) - (A, u) in R x X. Clearly u(x) ~ 
for all x and so (A, u) E D.

3. D is open in 0)}.
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First we establish that if (A, u) E D then u(x)  tp(x) for all x 
Since A  b, the function ( ~ - u) E X satisfies

We set

We have (W - ~c)(x) ~ 0 for all x E R~ and

Since lim (Y - u)(x) = 0, the strong maximum principle (see [5]) im-
|x| - oo

plies that either (Y- u)(x) &#x3E; 0 for all 
But the second possibility gives

which is impossible since A  b and u is a solution of (1.1).
Hence

Now suppose that (l, u) E D. We must show that there is an open subset
U of R x X such that (l, u) E U and un [ej 0 ) ~ ] c D.
We have already proved that

Since E &#x3E; 0, there exist Ro &#x3E; 0 and so &#x3E; 0 such that
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Since Tt(x)  we have

There exists 6 &#x3E; 0 such that /lu - u Ilx  6 implies that

We prove that

For Ro, we have

Now we show by contradiction that u(x)  tp(x) for I x I &#x3E; Ro.
Set S2 = (r ERN II |x I &#x3E; Ro and u(x) &#x3E; lY(x)} and suppose that

Q # 0.
Since u(x)  tp(x) for I x I = Ro, we have Ro) and

u(x) = tp(x) for all r e 8Q.
Moreover we have on Q,

Hence we have shown that for all I

and

Using the fact that lim o0 u(x) - tp(x) = 0 and the weak maximum
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principle, we obtain that (u - ~)(x) ~ 0 on S~, contradicting the def-
inition of S~. Hence Q = 0 and thus U n 0)}] c D.

5. Construction of supersolutions.

We are interested by supersolutions ( b , Y) with a parameter b E R as
large as possible, in order to obtain a better lower bound for

sup ~~, ~ (~,, u) using Theorem 4.1. To this end we shall construct
three supersolutions ( b , ~) of the problem ( 1.1 ) which satisfy the hy-
potheses of Theorem 4.1 by three different methods. Sometimes one con-
struction is possible whereas the others fail according to the hypotheses
imposed on the function f(x, s ). Similarly one construction may lead to a
sharper lower bound for than the others.

Set

REMARKS. ’

1. Under the hypotheses (HI) to (H6), we have

where v is defined by (3.4).
2. ~ and ~3 can be different. For example, if we take

we have P = - 1 and /3 = 0.

3. We can have lim inf f ( x , s)/s = 00 for all x e RN. This is the case
in example 1 of Section 6 if lim r( s ) 

For the construction of the two first supersolutions, we introduce the
following hypothesis.

(H7) On every compact K of R~ and for every - &#x3E; 0, there exists so =
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such that

First supersolution.

We suppose that the hypotheses (HI) to (H7) hold to construct this
supersolution.

Let

REMARKS.

1. We have 0 since q(r) - 5 £ 0 on 

LEMMA 5.1. Let a  ,u o. There exist a mapping Va : 
!l a  0 such that

Moreover for such a pair (Va, ,u a ) there exists an eigenfunction cp E X
such that cp ( x ) &#x3E; 0 for all x ERN and

PROOF. If  0, we can choose q(r) - 5 and in this case
Il a In the case p o = 0, the construction of the function V~ can be
done following the proof of Lemma 4.1 in [1].
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THEOREM 5.1. Let (Hl) to (H7) be satisfied. Then, for every b 
 u0 + ii, there exists a supersolution ( b , W) of the problem ( 1.1 ) such
that

PROOF. Since b - v  we can choose E &#x3E; 0 such that b - v + E 

 u0.
With Q = b - v + E, let T) be defined as in Lemma 5.1. Then

set

with C a positive constant to be fixed later on so that ( b , ~) is a superso-
lution of problem (1.1). Note that Y E X and F &#x3E; 0.

By the definition (5.5) of ii, there is 1~ &#x3E; 0 such that

We have for almost every with BR = B( o , R),

Next, we establish the same inequality for x E BR .
By (H7), there exists so = so(E, BR ) &#x3E; 0 such that

Since x E BR ~ &#x3E; 0, we can choose C such that so , and it
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follows that for all x E BR ,

Hence for every x E BR , we have

Finally

REMARK. We use only the hypotheses (HI), (H2), (H6) and (H7) to
prove Theorem 5.1.

THEOREM 5.2. Let the hypotheses (Hl) to (H7) be satisfied and 
Then

where and ji are defined by (5.21) and (5.23) respectively.

PROOF. Fix any b  5 +,u o . By Theorem 5.1, we have obtained a su-
persolution ( b , such that
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Setting

we verify that b  a - d).
Since d  v - b we have b  v - d ~ a - d. Moreover

,u o ~ 0 implies 
Hence by Theorem 4.1 we can conclude that sup (h (~,, u) E 

&#x3E; b.

Second supersolution.

Let

where 11 and 17 are defined by (5.5) and (5.6).
We suppose that ,S~ is bounded and we construct an another superso-

lution in order to improve the lower bound for (sup Â I A E CA’ 1.
The idea is to construct a supersolution on Q, another one on 

and afterwards to obtain the final supersolution on all RN by connecting
the two. But to do that, we may need to make the domain S~ larger in or-
der to have good properties on the boundary.

DEFINITION 5.1. The domain is called an admissible domain

for Q if Q c S~ *, Q * is bounded, the boundary aSZ * is C and there exist
xo E Q * and 6 &#x3E; 0 such that n(x). ( x - xo ) ; 6 a. e. on 3Q * where n(x) is
the outward unit normal.

In particular Q * is star-shaped and we may suppose without loss of
generality that xo = 0 E Q *.

LEMMA 5.2. Let a  0. Then there exist a continuous increasing
mapping W~ : [ 0, 00) ~ ( - m , 0 ) with lim Wa(r) = 0, and a function
cp E X such that 

~ ~ °~

Moreover cp(x) &#x3E; 0 for all x and cp is radially symmetric, dr ç  0

for r &#x3E; 0 where r is the radial coordinate. Furthermore cp decays expo-
nentially as I x I ~ 00.
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PROOF. Choose a continuous differentiable function W: [0, 00) ~
- (- oo, 0 ) such that W ’ (r) &#x3E; 0 for all r &#x3E; 0, W’ ( o ) = 0, hm W(r) = 0 and
where

Since p  0, there exists a function v E X such that v(x) &#x3E; 0 for all x E R
and

Furthermore v decays exponentially as x ~ I ~ 00.
We shall prove that when a = ,u the functions W and v as the proper-

ties required by the lemma. This will end the proof since to obtain the
desired functions W, and c~ at any a  0, it is sufficient to set

Let ~ be the Schwarz symmetrisation of v. Then by the basic proper-
ties of symmetrisation (see properties (C), (Pl) and (Gl) of [7]) we have
that

since - W is Schwarz symmetric.
By identification we get thatu = f ~~ ~ 2 + Wç 2 and, since p is a sim-

ple eigenvalue, we conclude Thus v is radial and satisfies
for all r &#x3E;- 0.

Set V = orv. We shall show that  0 for all r &#x3E; 0.

Suppose by contradiction that 1jJ(ro) = 0 for some ro &#x3E; 0, then we must
have = 0 and 0 since Y  0 for all r E [ 0 , oo).

Remark that satisfies

then when r = ro , we obtain



249

with ar W(ro ) &#x3E; 0 and ~(ro ) &#x3E; 0. Thus we get a contradiction and W and v
have all the required properties for a = ~c.

THEOREM 5.3. Let the hypotheses (Hl) to (H7) be satisfied. Sup-
pose that Q is bounded and that lim a2 f (x, 0 ) = a. Let A* be the first
eigenvalue of - d + il on WJ,2(Q*) where Q* is an admissible domain
for Q.

Then for all b  min ~v, there exists a supersolution (b, W) for
( 1.1 ) with

and so,

REMARK. If Q 1 c Q2, the first eigenvalue of the operator -A + n on
is bigger than on HJ(Q2). Hence our interest is to choose a do-

main ,S~ * as small as possible. For some functions f one can have
S~ * = S~.

PROOF. We fix b  A * 1.
Let S~ a denote the 6-neighborhood of Sd *. Taking 3 &#x3E; 0 sufficiently

small, we have

where ~, d is the first eigenvalue We denote by W
the associated positive eigenfunction.

Choose c &#x3E; 0 such that E  b , kd - &#x26;}.
By (H7), there exists So &#x3E; 0 such that

We claim that = CØ(x), where C is chosen sufficiently large in
order that CØ(x) &#x3E; so for all x E Q *, is a supersolution for (1.1) on Q * as-
sociated to b.
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Indeed a.e. S~ *, we have

Now we shall construct a supersolution on For this we apply
Lemma 5.2 with Q = b - 5 + E.

This gives two functions W, and p satisfying

with l§§ &#x3E; 0 and for r = I x I &#x3E; 0.

Set cp 1 (x) As in the proof of Theorem 5.1, by the definition
of P, there exists R &#x3E; 0 such that

Using the hypothesis (H7) with K = BR and fixing D &#x3E; 0 sufficiently
large, we have that

Consequently, since = 5 for x is Q and we obtain

Thus on

Now we construct a supersolution of (1.1) on I~N from the two we have al-
ready constructed.
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Denote by n the outward normal of the boundary of Q*. Recall that
cp 1 ( x ) = and that  0 for r &#x3E; 0. We shall show that choosing D
sufficiently large, we have

This is done by proving that is bounded from below.
First note that = all q &#x3E; 1 by

the choice of Qó. and thus 
We deduce that

Next recall that xo = 0 and set if:= x E 8Q* ). Thus we have

where 6 &#x3E; 0 is such that n( x ) ~ x ~ 3 a.e. 
Hence the choice of D gives the inequality (5.10).
Note that we have that for all p * 1 and ac E R

since rp 1 decays exponentially as 

Then we can define Y E X such that

where the constant c is choosen such that

and K= I 00 .
We now show that ( b , is a supersolution.
The function s H f ( x , s ) - bs - cs is decreasing in 0 ~ s ~ K and for

all x E by the choice of c. Hence f(x, cp(x) ) - (c + b) p(x)  f(x, 0 ) -
- (c + b)0 = 0 from which it follows easily that W(r) &#x3E; 0 for all x e RN.

Next we show that cp(x) for all x e R~.
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Set w(x) = cp(x) - W(x).
For all we have

by definitions of To and 
Hence ~,u( x ) ; 0 on R~. This implies that 0  ~( x ) ~ cp( x ) ~ K for all

x Thus by definition of W,

We have now shown that ( b , P) is a supersolution. From the remark
just before Theorem 4.1, it follows that,

The last result is obtained using Theorem 4.1.
Setting we check that 

jzj-w



253

This is obvious since d ; a - b and b  5 S fl. Thus we can conclude
that

for all

Third supersolution,.

For constructing this supersolution, we do not require the property
(H7) of f.

THEOREM 5.4. Let (HI) to (H6) be satisfied. Set

Suppose that

1. Q 0 is bounded.

2. There exist d o &#x3E; 0 and so &#x3E; 0 such that s -1 f ( x , s ) ~ 0 )
for all x E Q,5 and all s &#x3E; so, where Q ðo denotes the d0-neighborhood of

uniformly on compact subsets of w.

Let

Then for any b  min {v, ~, o } there exists a supersolution (b, 1JI) of prob-
lem (1.1) such that

If, in addition, A  f3, then

REMARKS.

1. We have Q c where ,S~ is defined by (5.9). This means that Q
is also bounded.
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2. The construction used in Theorem 5.4 is a generalization of the
one found in [1] (see example 2 in Section 6).

PROOF. Fix 

Choose d E (0, (5o) so small that b  kd  Âo where

We can choose an such that

and, for 0  y  d, the function 17 has the following properties

Next we choose E&#x3E;0 such that b - v + E  0 and then for o = b - v + E
we denote by W, and cp the functions given by Lemma 5.2. By definition
of v there exists R &#x3E; 0 such that and

It is easy to see that there is a function 0 having the following proper-
ties, 0 E X and Ø(x) &#x3E; 0 for all 

Set m = min e ,S~ a~~ and

we have that m &#x3E; 0 and M &#x3E; - oo.

By the hypothesis 3, there exists s, &#x3E; 0 such that
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Now set tp = C~ where C is so large that so for all x E Q 6
and si for all x E B( o, R).
We now show that ( b , IF) is a supersolution.
For x E ~ d/2,

by the hypothesis 2.

since sl.
For x E R),

since and x ( ; R.
Thus ( b , W) is a supersolution and furthermore

Setting d : = lim sup (4 W(r) /W(r) ), we easily check from d  v - b and
|x| - oo

5 £ (3 ~ a that b ~ a - d}.
Hence by Theorem 4, we obtain sup (£ (~, , u) E e;i } ~ b.

6. Special cases.

In order to show more clearly the situations in which Theorem
1.1 can be applied and in which we are able to construct a supersolution
of the problem (1.1), let us consider the special case where f can
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be written as,

We assume that P, q and r have the following properties.

Since only the product q(x) r(s) appears in (6.63), we can assume
henceforth that

It is easy to verify that (Al) and (A2) ensure that f satisfies the condi-
tions (Hl) to (H4) and that

To see if (H5) is satisfied, we begin by calculating /3(C). By (6.12), we
have that

and so for any C ; 0,

Thus, if for instance, lim inf q( x ) &#x3E; 0 and lim r(s) = - oo, it follows
that 

and the condition (H5) is not satisfied.
To avoid this kind of situation we assume henceforth that
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we have the following estimates

Clearly ~3 &#x3E; - 00 so (H5) is satisfied when (Al) to (A3) hold and we
can apply Theorem 1.1 provided that A  a in the case (A3)(a), and A 
 lim inf p(x) + q(x) inf r(s) in the case (A3)(b).1 1

The results in this paper aim to sharpen the conclusion of Corollary
1.1 under various additional assumptions.

In the present context the hypothesis (H6) becomes

and this is ensured by the following properties of p,q and r.

(A4) One of the following cases occurs

Note that if (A4)(c) occurs then by (6.12) we have that (A3)(a) is also
satisfied.

The lower bounds for involve the quantities v
and 5 which can be expressed as

and

To limit the number of different cases which can occur we restrict our at-
tention to the case where q and r satisfy the following conditions.

Clearly (Al), (A2) and (A5) ensure that (A3) and (A4) are also satis-
fied. More precisely if (Al), (A2) and (A5) are satisfied then (A3)(b) is
satisfied and either (A4)(ac) or (A4)(b) must also be satisfied. Note also
that (A3)(a) is not excluded. Furthermore assuming (Al), (A2) and (A5)
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the quantities v and v become

and

Notice such that q(x) =0}.
By Corollary 3.2 we know that If 

(which occurs, for example, when q(x) &#x3E; 0 for all x E R~ and lim 
- ~ ) this gives the best possible lower bound for On the other
hand, (which occurs, for example, if inf f p(x) x ERN such that
q(x) = 0 ~ ~ ~l) Corollary 3.2 yields no information and we must turn to
the results in Section 5. Even when A  v but v  {3, the results in Sec-
tion 5 may give a better lower bound for sup (h (~,, ~c) E than Corol-

lary 3.2.
In Section 5, the first two methods of constructing supersolutions re-

quire the hypothesis (H7) which we now discuss in the context of

(6.11).
Letting we formulate the following condi-

tion.

(A6) For all x E cv, (p(x) + q(x) lim and if lim = m , we

assume in addition that for any e &#x3E; 0 and any compact subset K of
R~, there exists 3 = 6(E, K) &#x3E; 0 such that whenever

r e K and  3.

Under the conditions (Al), (A2), (A5) and (A6), the hypothesis (H7) is
satisfied and we have that

and thus the region S~ which occurs in the second construction

becomes

Thus u) can be estimated using Theorems 5.2 and
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5.3 provided that (Al), (A2), (A5) and (A6) are satisfied, but Theorem 5.3
requires S~ to be bounded.

In particular, if (Al), (A2), (A5) and (A6) hold and if S~ _ 0, then The-
orem 5.2 gives sup (h (A, u) E CA’ B since n(x) = 11 = f3 and Ilo = 0 in
this case.

On the other hand Theorem 5.4 does not require the hypothesis (H7)
and it can be used provided that, in addition to (Al), (A2) and (A5), we
impose the following condition.

(A7) The set is bounded, lim r(s) = 00 and for any compact set
K of w, inf q(x) &#x3E; 0. 

~~ °~

xeK

Note however that (H7) can be satisfied, and so Theorems 5.2 and 5.3
can be used in the cases where is unbounded and lim sup r(s ) 

~- 00

For q E the sets ,S~ and Q 0 appearing in Theorem 5.3 and 5.4
are given by

and

so ,S~ can be small (even empty) in cases where Q o = is large (even
unbounded).

EXAMPLE 1. In addition to the assumptions (Al) and (A2), we sup-
pose that

Clearly (A5) is satisfied and a = ~3 = v. Furthermore oi = and the

property (iii) implies that (A6) is satisfied. In fact, if lim inf r( s )  00,
s - oo

then
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Also given any compact subset K of R~ inf q(x) &#x3E; 0 and so, setting
xEK

we = 0.

Finally we observe that = v = a for all x E R~’, which implies that
~o=0’ Theorem 5.2 can now be invoked to conclude that sup f A (~. , ~c ) E
E C~ ~ = a provided that  a. If lim this also follows from

Corollary 3.2 since v = a in this case. 
°~

The situation considered in this example is comparable to that treat-
ed in Theorem 10 of [3], where under stronger assumptions it is shown
that C~ is a continuous curve and its boundedness as A approaches a is
also analysed.

EXAMPLE 2. In addition to the assumptions (Al), (A2) and (A5), we
suppose that

is non-empty and bounded,

Again we have that v = B.
In the notation of Section 5.3, o = R~BZ and = int Z. There exists

so &#x3E; 0 such that r(s) ; 0 for all s ; so and so + q(x) r(s) ; p(x) =
= 0) for all x E R~ and s ~ so .

If K is a compact subset of cv, inf q(x) &#x3E; 0 and so given any N &#x3E; 0

there exists s, = s(N, K) &#x3E; 0 such that p(r) + q(x) ds) * N for all x E K
and s ; sl .

Thus we see that Theorem 5.4 can be applied to deduce that

provided that  /3 where

But in the notation of Section 2, and so, by the discussion at
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the end of Section 2, we also have that

Thus to obtain the sharp conclusion that sup I A (~,, u) E C~ ~ _ ~ o, it
is sufficient to ensure that A o ~ ~3. This can be done by choosing q so that

is large enough since, given any e &#x3E; 0, there exists R &#x3E; 0 such that

Â1(Qo)  A + E provided that 
The situation treated in this example is comparable to that covered

by Theorem 4.4 of [1] where (in our notation) it is shown that

However, our conclusion is somewhat sharper since

Furthermore we have not required any smoothness of q similar to that in
(Al) of [1].

EXAMPLE 3. In addition to the assumptions (Al), (A2) and (A5), we
suppose that

The set = int Z need not be bounded in this example. Nonetheless
v = /3 by (A5) and (A6) is still satisfied with

Thus B(0, R) is an admissible region containing 
ERN  /3} (see the definition 5.1). From Theorem 5.3, we can
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conclude that

provided that A  ~3.
We observe that can be much smaller that Z and that

;Li(B(0~))-~ oo as R - 0.
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