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Groups Preserving the Cardinality
of Subsets Product under Permutations.

YanG Kok KiMm (*)

ABSTRACT - A group G is said to preserve the cardinality of 2-element subsets
product under permutations, or G is a PC(2, n)-group if either G = 1 or for
each n-tuple (S, ..., S,) of 2-element subsets of G, there is a non-identity
permutation ¢ in X, such that |S;S;...S,| = |S,1)So2) -+ Soemy | » Where | S|
means the cardinality of a set S. Some characterizations of PC(2, n)-groups
are presented here.

1. - Introduction.

Recently there has been much interest in the study of groups satis-
fying «finiteness conditions», for example, groups with various per-
mutability conditions (see, for instance,[1,2] and[3]). A group G is
called a PSP-group if there exists an integer » > 1 such that for each n-
tuple (H,, ..., H,) of subgroups of G, there is o(# 1) € ¥, such that the
two complexes HyH,...H, and H,,)H,q)...Hy,) are equal. It was
shown in [5] that a finitely generated soluble PSP-group is finite-by-
abelian. In this note, we consider a similar notion of permutable prod-
ucts, for 2-element subsets of G instead of subgroups of G.

NotaTioNS. For subsets S, S, ..., S, of a group G and an element
g in G, 8$;8;...8, = {s1...8,; 8€S;}, S'g={sg;seS} and ¢g-S=
= {gs; s € S}. Furthermore |S| means the cardinality of a set S.

DEFINITION. For an integer n > 1, a group G is said to preserve the

cardinality of 2-element subsets product under permutations, or G is a

(*) Indirizzo dell’A.: Department of Mathematics, Dongeui University,
Pusan 614-714, Korea.
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PC(2, n)-group if either G =1 or for each n-tuple (S, ..., S,) of 2-ele-
ment subsets of G, there is a permutation o(# 1) in X, such that

1.1) |8182...80 | = 1801y Soc2) ---Somy | -

Let PC(2) be the class UIPC(2, n). We give a complete description of

PC(2, 2) and PC(2, 3)-groups and show that PC(2)-groups are center-
by-finite exponent. As an immediate corollary, we note that PC(2)-
groups are collapsing in the following sense. In[8], Semple and Shalev
called a group G n-collapsing if for any set S of n-element in G, |S"| <
< n" and G is collapsing if it is n-collapsing for some % > 0. They proved
that for a finitely generated residually finite group G, it is collapsing if
and only if it is nilpotent-by-finite.

As we see in the following remark, it makes sense to fix one side
of 1.1.

2. - Remark.

A non-trivial group G has the following property. Let » = 3. For
each n-tuple (S, ..., S,) of 2-element subsets of G, there exist distinct
permutations o, 7€ X, such that the cardinalities of S,(;)...S,) and
Sx1) - Syny are the same. Note |S;8S;...S, | <2".If n = 4, then n! > 2".
So the number of permutations is strictly greater than the number of
possible cardinalities of all permutable products. Hence there are two
distinet permutations with the above property. Suppose n =3. Let
Si,S; and S3 be three given 2-element subsets of G. If
|Soc1ySo2)Sez)| # 2, 8 for all o € X3, we are already done. So we can as-
sume lSa(l)Sa(Z)S0(3)| =2 or 3 for some o€ 23. Write Sl =
= {z, 12}, S; = {y, y1}andS; = {2,, 22, }.Suppose | S; S; S| = 2.Then
|S18z| = [SeS3| =2. Now by a simple calculation, we get that
|S3S; S| and |S;S38;| are 2 or 4. Assume |S;S;Ss| = 3. Write S| =
={1,z}and S; = {1, 2}. If | $; Sz | = |S{ Sz| = 2, then we have y = xy,
and y; = xy. Moreover S| S;S; = {¥, ¥1, ¥z, ¥12}. Since |S{ S, S; | =38,
we have y=y;2z or y, =yz. Notice that y=y,z e xy, =y,2=
=xyz < y; = yz. Hence |S;S;S3| =2, a contradiction. So |S;S;| =
= {y, y1, «y, 2y, }| = 8. Without loss of generality, we can assume y =
=gy, . Since S{S;83 =88, US/S;-2, there are two cases to exam-
ine.

Case (). y = xyz, y, =yz and xy = ¥y, 2.

Then y=2y-2=y,2'2=y%2> and y=2xyz =axy;2z=ay. Thus
x3=23=1. Note that SzS3S1=S2S3‘x1US2S3'x1x and S283=
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= {yz,, Y22, Y22z, }. Now suppose |S;S3S;| < 6. Then at least one ele-
ment in S,S;-x; lies in S;S3-x;x. Note that yzz,x, =yz,x0 <
SRR X T RHTLL D YR Xy = YR XX > Y21X = YRR221 Xy = Y21 01X
and Y222, %, = Y2 X1 & > Y2, L) = Y22, 0, X <> Y2216y = Yzzz1 22, So that
one element in S, Ss-x; lies in S, S3-x;« implies that the other two ele-
ments in S, S; -, belong to S, S;-x;«. Hence |S,S58S;| = 6 or 3. Similar-
ly we can show |S3S;S;| =6 or 3.

Case (i)). ¥y =y12, y1 = xyz and vy = yz.
This case can be checked by the same argument as in case (i).

3. - Results.

Clearly PC(2) contains all finite groups. So for a given =, it seems
hard to characterize PC(2, n)-group. However in a very particular case,
we have a complete result.

LEMMA 3.1. Let G be a PC(2, 2) or PC(2, 3)-group and x, y € G.
Then

@) if %=1, then x e Z(G), the center of G;
(i) if [x, y] =1, then x¥ =21,

Proor. (i) If « has order 2 and [z, y]# 1, take S; = {1, x}, S; =
= {xy, y}andS3 = {1 a:y} Then |8182S3| # |Sa(1)So(2)Sa(3)| for all
o(# 1)623 and |S1S2| # |Slel

(ii) Let G be a PC(2, 8)-group. For S; = {1, 2}, So = {y, x 'y}
and S = {1, y “'ay}, there is a non-trivial o € X such that |S;S,S;| =
= |So)So@Soa |-

There are five cases to check. We consider one of them (the others
are similar). Suppose |S1S283| = ISgSpSzI <4. If |S182| =2, x2 =1
and so x € Z(G), a contradiction. Hence |S;S;| = |{y, 2y, x "'y}| =38.
Note that S3S;S, =S;S8, Uy 12y-8;S:. So at least two elements in
y lay-S;S; are in S;S,. The non-trivial possible cases are (i) y =
=y loyzy, @) oy =y ayx 'y, () x 'y =y 'oyy and (v) x 1y =
= y ~!xyxy. Moreover two of these relations should hold. Note that (i) or
(iii) is equivalent to the relation we want. If (ii) and (iv) are true, then
y ‘aoy =22 =22, Since x? lies in the center of G, y ~xy = x? gives a
contradiction. If G is a PC(2, 2)-group, take S; = {1,x} and S, =
= {xy, y}. We then get the same result by a simple calculation. =
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THEOREM 3.2. G is a PC(2, 2) or PC(2, 3)-group if and only if ei-
ther G is abelian or the direct product of a quaternion group of order 8
and an elementary abelian 2-group.

Proor. Let G be a PC(2, 2) or PC(2, 3)-group. Then by Lemma
3.1(ii), x¥ =« *!, any «, y in G. So G is a Dedekind group and every ele-
ment of odd order is in the centre of G. If G is not abelian, then G has no
elements of odd order, otherwise, with z, ¥, z in G, [x, y] # 1, z of odd
order, we get (xz)! = x 'z # (x2)*!. Now the result follows from the
structure of Dedikind groups (see[6], p. 139).

For the converse, let G = @ X D where D is an elementary abelian
2-group and Q a quaternion group of order 8. First we show that G is in
PC(2, 3). Let A, B and C be three given 2-element subsets of G. Write
A={¢, 9,02}, B={by, cz} and C = { go, dwg, }, where a, b, ¢, d € Q,
z,y,2,weD and g, 9,€G. Then |ABC| = |A'BC’| and |CAB| =
= |C"A'B|,whereA' = {1, ax},C' = {1, dw}andC" = {1, d*w}.Note
that in C", e=1 if g,g, lies in the centeralizer of d, and ¢ = —1 if
not.

Case (i). |AB| =4.

Since C' = {1, dw} and C" = {1, d*w}, A'BC' =A'BUA’'B-dw
and C"A'B=A'BUd*w-A'B. Note that if there is one element in
A'B-dw which is in A’ B, then there is one element in d*w-A' B which
is in A' B. The converse is also true. For example, suppose that by =
= abdxyw. Then by = abdeyw = d" abxyw <> by = d°abxyw if ¢ =17,
and d®by = abryw <> d*byw = abxy if not. This means |A'BC’'| =
= |C"A'B| and so |ABC| = |CAB]|.

Case (ii). |AB| =3.
This case can be checked by the same argument as in case (i).

Case (iii). |AB| = 2.

Since |A'B| = |{1, ax}{by, cz}| =2, we have b =ac and c = ab.
So ¢=ab =aac and a®=1. Hence A’ lies in the center of G. Thus
|A"BC'| = |BC'A’|. Clearly |BC'A’'| = |BCA|.

Similar argument can be applied to show that G is in
PC(2,2). =

THEOREM 3.3. A PC(2, n)-group is center-by-(finite exponent
fn)).

PROOF. We claim that there exists an integer k such that [y*, «] =
=1forallx, y € G. Let x, y € G. We consider the n-tuple (S, ..., S,) of
2-element subsets of G where S;={y, y' ‘xy‘}. Then S;8;,...S, =



Groups preserving the cardinality ete. 33

={y", xy", x®y"™,..., x"y"},and |S;S;...S,| = min(|z|, » + 1).Since
G is a PC(2, n)-group, there is a permutation o(# 1) e ¥, such that
!SISZ Snl = lSa(l)Sg(z) ---Sa(n) | . Write g(Z, ]) = Sa(i)Sa(i+ 1) -"Sa(j) for
1<),

If |g(n —1,1)| and |g(l, j)| are strictly increasing functions of ¢, j
for all I, then for an integer j such that o(j)+1#o0(j+1),
So()Soqj+n | <4. Here S,;={y,y' *Pay’?} and S,j.1=
= {y, y! U+ DgyoU+ D} Sowe havearelation x = ¥  where s(= 0) de-
pends on ¢ and so on «, y. However note that there are only finitely
many choices of s independent of x, y, say, s;,...,s,. Let k=
=lem.{s;: i=1, ..., m}. Then [z, y*]1=1 for all z, y.

Suppose that |g(n — 1, 1)| or |g(l, )| is not strictly increasing.

Case (i). |x| >n + 1.

Let |9, )| =19(,j+D]. Then g(,j+1) =905 yU
U g(l, Ny, So g(l, §) = g, )a?¥’, where r = 0(j + 1) — 1 and
Y (@YY e g(p, q), for any k. Since |g(l,j)| <n +1, || <n+1.
This is a contradiction.

Case (i). |x| <m + 1.

For S;1)Ss2) --- Sy » 1€t j be an integer such that o(j) +1#o(j +1).
Now we can assume that |S,(;,S,¢j+1)| = 4. Then since [S;8;...S,| =
= |x|, we can find p, q¢ with p <j <j+ 1< q such that |g(p, q)| =
= |g(p, g+ D or [g(p - 1, )| = |g(p, @)|. Let |g(p, @)| = |g(p, g +
+ 1)| (the other case is similar). Then we have a relation g( D, q) =
=g(p, Q)x¥, where r=0(qg+1)—1. So g(p, q) = g(p, g)(x?)* for
any h, and g(p,q)={y™ y" @), y" @), ...,y @)},
where m =q —p + 1. Thus for some integer ¢, we have relation

(OR1 G+1D-1-t
¥ = (V) or ¥ = (¢¥")’ where 2 < a, b < |x|. In any case

we have x¥’ = ¢ for some 2 < d < |z|. Since |z| <n + 1, [y*, x]1=1
for some k. In every case our s and k depend on «, y. However there are
still only finitely many choices of s and & that are independent of x, y.
This completes the proof. =

A group G is restrained if there is an integer n such that (x)¥ is
generated by 7 elements for all x,yeG. In[4], the following is
proved.

LEMMA 34. Let G be a finitely generated restrained group. If H is
a mormal subgroup of G such that G/H is cyclic, then H is finitely
generated.
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ProoF. For some g € G, we can write G in the form H(g). Since G is
finitely generated, there exist hy, ks, ..., h, in H such that G =
=(hy, hg, ..., hy, g)andH = (hy, hs, ..., h,)¢ .Foreachi =1, ..., r,(h{®)
is finitely generated, say, (h{?) = (hy, ki, ..., hiawy). Now let H; =
= (hys; 1 < i< 7, 1<Ui)<d(3)). Then clearly g lies in Ng (H,), the nor-
malizer of H, in G and (hy, ..., h,) < H;. Hence Ng(H,) = G. This
means that H, = H and H is finitely generated. =

Now we mention some properties of PC(2) as immediate conse-
quences of Theorem 3.3. For closure properties, we follow notations
in [7]. Consider the restricted direct product G = DrA,, where A, is
the alternating group of degree » > 4. Then G is locally finite but has
no center. Clearly the standard wreath product of two infinite cyclic
groups is not center-by-finite exponent. Neither is a free product of
two infinite cyclic groups.

CoroLLARY 3.5. (i) A PC(2)-group is collapsing.
(ii) A PC(2)-group is restrained.

(i) The class of PC(2)-groups is not closed under any of the clo-
sure operations P, D,C, W, F, R, L. ®

QUESTIONS. (i) For G, He PC(2), is G X H in PC(2)?
(ii) Is PC(2) quotient-closed?

COROLLARY 3.6. A finitely generated soluble PC(2)-group G 1is
center-by-finite.

ProOF. By Theorem 3.3, G is center-by-(finite exponent). And a
finitely generated soluble group with finite exponent is finite. =

Locally graded groups are those groups in which every finitely gen-
erated non-trivial subgroup has a finite non-trivial quotient.

THEOREM 3.7. If G is a finitely generated locally graded PC(2)-
group, then G is center-by-finite.

ProOOF. Let N be the finite residual of G. By Theorem 3.3 G is cen-
ter-by-(finite exponent). Thus G/N is a finitely generated residually fi-
nite center-by-(finite exponent). It was shown in[11] that a finitely
generated residually finite group of finite exponent is finite. Hence
G/N is center-by-finite. G is restrained and so N is finitely generated
by repeated applications of Lemma 3.4. Let N # 1. Since G is locally
graded, N has a non-trivial finite factor group N/K. But then
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N/coreg(K) is finite and G/coreg(K) is finite-by-(center-by-finite).
This group is polycyclic-by-finite and so it is residually finite, contrary
to the choice of N. =

An element g of a group G is called an FC-element if it has only a fi-
nite number of conjugates in G. In particular if there is a positive inte-
ger m such that no element of G has more than m conjugates, then G is
called a BFC-group. The subgroup of all FC-elements is called the
FC-center.

THEOREM 3.8. A finitely generated non-periodic PC(2)-group G is
center-by-finite.

Proor. Let G = (x;, s, ..., %,) be a PC(2, n)-group and let z be an
element of infinite order in Z(G), the center of G. For w € G, let Ny be a
right coset of N, the normalizer of (x) where & = wz if w has finite or-
der, and « = w if not. Suppose that y is reduced and I(y) =m = n,
where l(y) denotes the length of the shortest word for y. Write
S={x*':i=1,...,7} and ¥y = %,¥5... ¥, Where y;€8S. Now we con-
ider an n-tuple (S, ..., S,) of 2-element subsets of G where S;=
={y;, ™ y;}, mo=1, ;= Y1 ¥2...y;. Since G is a PC(2, n)-group,
there is o(# De En such that |S1S2Sn| = |S¢7(1)S6(2)"'Sa(n) I .
Write g(4, §) = So(i)Soci + 1) --- So(jy for ¢ < j. Since « is of infinite order,
|g(n — 4, 1)| and |g(l, j)| are strictly increasing functions of i, j for
all I. Let j be an integer for which o(j) +1 # o(j + 1). Note that
818z...8u={Y1¥2 - Yn> TY1Y2 - Yus» T2Y1Y2 oo Yy oor T Y1Y2 - Yn },
and ISISZSnl =mn + 1. Hence |Sa(j)Sa(j+l)| < 4. Since Sor(j) = {ya(j)’
x™0 1y}t and So+1) = {Yoi+ 1) TGV Y41y}, We get xToD =
= gTeG+n-1, or (& 1)@ = gTeu+v-1, Hence 77 o+ 1)1 lies in N. So
Nny) = Nmty(j+1)-1- By the repeated applications of the above argu-
ment, we can assume that Ny = Ny', where I(y') < n. Hence N has fi-
nite index in G and so does C(wz) = C(w). In fact there is an integer m
such that |G:C(w)| < m for all w e G. Hence G is a BFC-group. Since G
is finitely generated, it is center-by-finite. ®

COROLLARY 3.9. A torsion-free PC(2)-group is abelian. =
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